نتایج جستجو برای: cherednik opdam transform
تعداد نتایج: 115329 فیلتر نتایج به سال:
In this note we determine the values of parameters c for which the polynomial representation of the degenerate double affine Hecke algebra (DAHA), i.e. the trigonometric Cherednik algebra, is reducible. Namely, we show that c is a reducibility point for the polynomial representation of the trigonometric Cherednik algebra for a root system R if and only if it is a reducibility point for the rati...
We study those finite dimensional quotients of the rational Cherednik algebra at t = 0 that are supported at a point of the centre. It is shown that each such quotient is Morita equivalent to a certain “cuspidal” quotient of a rational Cherednik algebra associated to a parabolic subgroup of W .
We study multilevel matrix ensembles at general β by identifying them with a class of processes defined via the branching rules for multivariate Bessel and Heckman-Opdam hypergeometric functions. For β = 1, 2, we express the joint multilevel density of the eigenvalues of a generalized Wishart matrix as a multivariate Bessel ensemble, generalizing a result of Dieker-Warren in [DW09]. In the null...
The algebraic structure and the relationships between the eigenspaces of the Calogero-Sutherland model (CSM) and the Sutherland model (SM) on a circle are investigated through the Cherednik operators. We find an exact connection between the simultaneous non-symmetric eigenfunctions of the AN−1 Cherednik operators, from which the eigenfunctions of the CSM and SM are constructed, and the monomial...
The Jack polynomials Jλ(x; α) form a remarkable class of symmetric polynomials. They are indexed by a partition λ and depend on a parameter α. One of their properties is that several classical families of symmetric functions can be obtained by specializing α, e.g., the monomial symmetric functions mλ (α = ∞), the elementary functions eλ′ (α = 0), the Schur functions sλ (α = 1) and finally the t...
We study the endomorphism algebras of Verma modules for rational Cherednik algebras at t = 0. It is shown that, in many cases, these endomorphism algebras are quotients of the centre of the rational Cherednik algebra. Geometrically, they define Lagrangian subvarieties of the generalized Calogero–Moser space. In the introduction, we motivate our results by describing them in the context of deriv...
The algebraic structure and the relationships between the eigenspaces of the Calogero-Sutherland model (CSM) and the Sutherland model (SM) on a circle are investigated through the Cherednik operators. We find an exact connection between the simultaneous non-symmetric eigenfunctions of the AN−1 Cherednik operators, from which the eigenfunctions of the CSM and SM are constructed, and the monomial...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید