نتایج جستجو برای: convex feasibility problem

تعداد نتایج: 1015611  

Journal: :journal of computer and robotics 0
tahereh esmaeili abharian faculty of computer and information technology engineering, qazvin branch, islamic azad university, qazvin, iran mohammad bagher menhaj department of electrical engineering amirkabir university of technology, tehran, iran

knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering  in which there is no need to  be peculiar about how to select initial values. due to properly converting the task of optimization to an equivalent...

Journal: :Math. Oper. Res. 2005
Mohammad R. Oskoorouchi Jean-Louis Goffin

The convex feasibility problem in general is a problem of finding a point in a convex set that contains a full dimensional ball and is contained in a compact convex set. We assume that the outer set is described by second-order cone inequalities and propose an analytic center cutting plane technique to solve this problem. We discuss primal and dual settings simultaneously. Two complexity result...

2007
Ulrich Betke

We consider the homogenized linear feasibility problem, to find an x on the unit sphere, satisfying n linear inequalities ai x ≥ 0. To solve this problem we consider the centers of the insphere of spherical simplices, whose facets are determined by a subset of the constraints. As a result we find a new combinatorial algorithm for the linear feasibility problem. If we allow rescaling this algori...

2014
MING TIAN MINMIN LI

It is well known that the gradient-projection algorithm plays an important role in solving constrained convex minimization problems. In this paper, based on Xu’s method [Xu, H. K.: Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl. 150, 360-378(2011)], we use the idea of regularization to establish implicit and explicit iterative methods for finding the approximate ...

Journal: :Medical physics 2013
Emil Y Sidky Jakob S Jørgensen Xiaochuan Pan

PURPOSE Iterative image reconstruction (IIR) algorithms in computed tomography (CT) are based on algorithms for solving a particular optimization problem. Design of the IIR algorithm, therefore, is aided by knowledge of the solution to the optimization problem on which it is based. Often times, however, it is impractical to achieve accurate solution to the optimization of interest, which compli...

2008
M. C. Campi S. Garatti

In this paper we study the link between a semi-infinite chance-constrained optimization problem and its randomized version, i.e. the problem obtained by sampling a finite number of its constraints. Extending previous results on the feasibility of randomized convex programs, we establish here the feasibility of the solution obtained after the elimination of a portion of the sampled constraints. ...

1991
James G. Berryman Lawrence Livermore

When an inverse problem can be formulated so the data are minima of one of the variational problems of mathematical physics, feasibility constraints can be found for the nonlinear inversion problem. These constraints guarantee that optimal solutions of the inverse problem lie in the convex feasible region of the model space. Furthermore, points on the boundary of this convex region can be found...

Journal: :journal of mathematical modeling 2015
maziar salahi arezo zare

in this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. first we introduce a parametric equivalent of the problem. then a bisection and a generalized newton-based method algorithms are presented to solve it. in order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...

In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...

Journal: :CoRR 2018
Albert Atserias Joanna Ochremiak

The ellipsoid method is an algorithm that solves the (weak) feasibility and linear optimization problems for convex sets by making oracle calls to their (weak) separation problem. We observe that the previously known method for showing that this reduction can be done in fixed-point logic with counting (FPC) for linear and semidefinite programs applies to any family of explicitly bounded convex ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید