نتایج جستجو برای: deviance information criterion
تعداد نتایج: 1216297 فیلتر نتایج به سال:
Selecting an appropriate representation for chords is important for encoding pertinent harmonic aspects of the musical surface, and, at the same time, is crucial for building effective computational models for music analysis. This chapter, initially, addresses musicological, perceptual and computational aspects of the harmonic musical surface. Then, two novel general chord representations are p...
Digital image correlation (DIC) is a well-established, non-invasive technique for tracking and quantifying the deformation of mechanical samples under strain. While it provides an obvious way to observe incremental and aggregate displacement information, it seems likely that DIC data sets, which after all reflect the spatially-resolved response of a microstructure to loads, contain much richer ...
Digital image correlation (DIC) relies on the visible surface features of a specimen to measure deformation. When the specimen itself has little to no visible features, a pattern is applied to the surface which deforms with the specimen and acts as artificial surface features. Since recent pattern application methods, e.g., micro-stamping [1] and lithography [2] allow for the application of hig...
Prof. Akaike made significant contributions in various fields of statistical science, in particular, in time series analysis in frequency domain and time domain, information criterion and Bayes modeling. In this article, his research contributions are described in order of launching period, frequency time domain analysis, time domain time series modeling, AIC and statistical modeling, and Bayes...
Experimental data need to be assessed for purposes of model identification, estimation of model parameters and consequences of misspecified model fits. Here the first and third factors are considered via analytic formulations for the distribution of the maximum likelihood estimates. When estimating this distribution with statistics, it is a tradition to invert the roles of population quantities...
ABSTRACT In the present paper, we consider the variable selection problem in Poisson regression models. Akaike’s information criterion (AIC) is the most commonly applied criterion for selecting variables. However, the bias of the AIC cannot be ignored, especially in small samples. We herein propose a new bias-corrected version of the AIC that is constructed by stochastic expansion of the maximu...
A generalized information formula related to logical probability and fuzzy set is deduced from the classical information formula. The new information measure accords with to Popper’s criterion for knowledge evolution very much. In comparison with square error criterion, the information criterion does not only reflect error of a proposition, but also reflect the particularity of the events descr...
The Akaike (1973, 1974) information criterion, AIC, and the corrected Akaike information criterion (Hurvich and Tsai, 1989), AICc, were both designed as estimators of the expected Kullback-Leibler discrepancy between the model generating the data and a tted candidate model. AIC is justiied in a very general framework, and as a result, ooers a crude estimator of the expected discrepancy: one whi...
The deviance information criterion (DIC) is widely used for Bayesian model comparison, despite the lack of a clear theoretical foundation. DIC is shown to be an approximation to a penalized loss function based on the deviance, with a penalty derived from a cross-validation argument. This approximation is valid only when the effective number of parameters in the model is much smaller than the nu...
Model selection is the problem of distinguishing competing models, perhaps featuring different numbers of parameters. The statistics literature contains two distinct sets of tools, those based on information theory such as the Akaike Information Criterion (AIC), and those on Bayesian inference such as the Bayesian evidence and Bayesian Information Criterion (BIC). The Deviance Information Crite...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید