نتایج جستجو برای: edge hyper wiener index
تعداد نتایج: 533390 فیلتر نتایج به سال:
a lot of research and various techniques have been devoted for finding the topologicaldescriptor wiener index, but most of them deal with only particular cases. there exist threeregular plane tessellations, composed of the same kind of regular polygons namely triangular,square, and hexagonal. using edge congestion-sum problem, we devise a method to computethe wiener index and demonstrate this m...
A lot of research and various techniques have been devoted for finding the topological descriptor Wiener index, but most of them deal with only particular cases. There exist three regular plane tessellations, composed of the same kind of regular polygons namely triangular, square, and hexagonal. Using edge congestion-sum problem, we devise a method to compute the Wiener index and demonstrate th...
The edge-Wiener index of a connected graph is the sum of the distances between all pairs of edges of the graph. In this paper, we determine the polyphenyl chains with minimum and maximum edge-Wiener indices among all the polyphenyl chains with h hexagons. Moreover, explicit formulas for the edge-Wiener indices of extremal polyphenyl chains are obtained.
Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
Let G and H be graphs. The tensor product G⊗H of G and H has vertex set V (G ⊗ H) = V (G) × V (H) and edge set E(G ⊗ H) = {(a, b)(c, d)|ac ∈ E(G) and bd ∈ E(H)}. In this paper, some results on this product are obtained by which it is possible to compute the Wiener and Hyper Wiener indices of Kn ⊗G.
let $g$ be a molecular graph with vertex set $v(g)$, $d_g(u, v)$ the topological distance between vertices $u$ and $v$ in $g$. the hosoya polynomial $h(g, x)$ of $g$ is a polynomial $sumlimits_{{u, v}subseteq v(g)}x^{d_g(u, v)}$ in variable $x$. in this paper, we obtain an explicit analytical expression for the expected value of the hosoya polynomial of a random benzenoid chain with $n$ hexagon...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید