نتایج جستجو برای: error back propagation
تعداد نتایج: 497074 فیلتر نتایج به سال:
In the previous study, we have proposed a template design method of cellular neural networks with back propagation algorithm. In that method, template learns by using the average error which corresponds to the difference between the output image and the desired image. In this study, we modify the back propagation algorithm for cellular neural networks template design. We inspect the performance...
We show that Langevin MCMC inference in an energy-based model with latent variables has the property that the early steps of inference, starting from a stationary point, correspond to propagating error gradients into internal layers, similarly to back-propagation. The error that is backpropagated is with respect to visible units that have received an outside driving force pushing them away from...
Learning procedures that measure how random perturbations of unit activities correlate with changes in reinforcement are inefficient but simple to implement in hardware. Procedures like back-propagation (Rumelhart, Hinton and Williams, 1986) which compute how changes in activities affect the output error are much more efficient, but require more complex hardware. GEMINI is a hybrid procedure fo...
It is difficult to accurately reckon vehicle position for vehicle navigation system (VNS) during GPS outages, a novel prediction algorithm of dead reckon (DR) position error is put forward, which based on Bayesian regularization back-propagation (BRBP) neural network. DR, GPS position data are first denoised and compared at different stationary wavelet transformation (SWT) decomposition level, ...
In this paper, a neural network model reference adaptive system speed observer is designed, which can be used in speed control of linear induction motors (LIMs). Dynamical equations of LIM have been considered accurate. In other words, the end effect and the electrical losses of the motor have been included in the motor equivalent circuit. Then equations of the reference model and adaptive mode...
Neural networks have been used successfully to a broad range of areas such as business, data mining, drug discovery and biology. In medicine, neural networks have been applied widely in medical diagnosis, detection and evaluation of new drugs and treatment cost estimation. In addition, neural networks have begin practice in data mining strategies for the aim of prediction, knowledge discovery. ...
Nowadays cancer has become huge threat in human life. There are many types of cancer, Lung cancer is one of the common types causing very high mortality rate. The best way of protection from lung cancer is its early detection and diagnoses. With the fast development of the technology of computed tomography (CT) technology, medical test images become one of the most efficient examination methods...
In this work, we propose a Hybrid particle swarm optimization-Simulated annealing algorithm and present a comparison with i) Simulated annealing algorithm and ii) Back propagation algorithm for training neural networks. These neural networks were then tested on a classification task. In particle swarm optimization behaviour of a particle is influenced by the experiential knowledge of the partic...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید