نتایج جستجو برای: first zagreb coindex
تعداد نتایج: 1442132 فیلتر نتایج به سال:
For a graph $G$ with edge set $E(G)$, the multiplicative sum Zagreb index of $G$ is defined as$Pi^*(G)=Pi_{uvin E(G)}[d_G(u)+d_G(v)]$, where $d_G(v)$ is the degree of vertex $v$ in $G$.In this paper, we first introduce some graph transformations that decreasethis index. In application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum Zagreb ...
Todeschini et al. have recently suggested to consider multiplicative variants of additive graph invariants, which applied to the Zagreb indices would lead to the multiplicative Zagreb indices of a graph G, denoted by ( ) 1 G and ( ) 2 G , under the name first and second multiplicative Zagreb index, respectively. These are define as ( ) 2 1 ( ) ( ) v V G G G d v and ( ) ( ) ( ) ( ) 2...
The first variable Zagreb index of graph $G$ is defined as begin{eqnarray*} M_{1,lambda}(G)=sum_{vin V(G)}d(v)^{2lambda}, end{eqnarray*} where $lambda$ is a real number and $d(v)$ is the degree of vertex $v$. In this paper, some upper and lower bounds for the distribution function and expected value of this index in random increasing trees (rec...
let g be a simple connected graph. the first and second zagreb indices have been introducedas vv(g)(v)2 m1(g) degg and m2(g) uve(g)degg(u)degg(v) , respectively,where degg v(degg u) is the degree of vertex v (u) . in this paper, we define a newdistance-based named hyperzagreb as e uv e(g) .(v))2 hm(g) (degg(u) degg inthis paper, the hyperzagreb index of the cartesian product...
Let G be a simple connected graph. The first and second Zagreb indices have been introduced as vV(G) (v)2 M1(G) degG and M2(G) uvE(G)degG(u)degG(v) , respectively, where degG v(degG u) is the degree of vertex v (u) . In this paper, we define a new distance-based named HyperZagreb as e uv E(G) . (v))2 HM(G) (degG(u) degG In this paper, the HyperZagreb index of the Cartesian p...
The Zagreb eccentricity indices are the eccentricity reformulation of the Zagreb indices. Let H be a simple graph. The first Zagreb eccentricity index (E1(H)) is defined to be the summation of squares of the eccentricity of vertices, i.e., E1(H) = ∑u∈V(H) Symmetry 2016, 9, 7; doi: 10.3390/sym9010007 www.mdpi.com/journal/symmetry Article First and Second Zagreb Eccentricity Indices of Thorny Gra...
When a finite group freely acts on topological space, we can define its index and coindex. They roughly measure the size of given action. We explore interaction between this theory dynamics. Given fixed-point free dynamical system, set [Formula: see text]-periodic points admits natural action text] for each prime number text]. are interested in growth coindex as Our main result shows that there...
for a graph $g$ with edge set $e(g)$, the multiplicative second zagreb index of $g$ is defined as $pi_2(g)=pi_{uvin e(g)}[d_g(u)d_g(v)]$, where $d_g(v)$ is the degree of vertex $v$ in $g$. in this paper, we identify the eighth class of trees, with the first through eighth smallest multiplicative second zagreb indeces among all trees of order $ngeq 14$.
in this paper we study the zagreb index in bucket recursive trees containing buckets with variable capacities. this model was introduced by kazemi in 2012. weobtain the mean and variance of the zagreb index andintroduce a martingale based on this quantity.
The first and second Zagreb indices of a graph are equal, respectively, to the sum of squares of the vertex degrees, and the sum of the products of the degrees of pairs of adjacent vertices. We now consider analogous graph invariants, based on the second degrees of vertices (number of their second neighbors), called leap Zagreb indices. A number of their basic properties is established.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید