نتایج جستجو برای: fully normalized legendre functions
تعداد نتایج: 747502 فیلتر نتایج به سال:
We analyze the asymptotic rates of convergence of Chebyshev, Legendre and Jacobi polynomials. One complication is that there are many reasonable measures of optimality as enumerated here. Another is that there are at least three exceptions to the general principle that Chebyshev polynomials give the fastest rate of convergence from the larger family of Jacobi polynomials. When f (x) is singular...
in this paper, an effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (rbfs). we present an algorithm based on interpolation by radial basis functions including multiquadratics (mqs), using legendre-gauss-lobatto nodes and weights. also a theorem is proved for convergence of the algorithm. some numerical examples are presented...
In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...
In this paper, we decide to select the best center nodes of radial basis functions by applying the Multiple Criteria Decision Making (MCDM) techniques. Two methods based on radial basis functions to approximate the solution of partial differential equation by using collocation method are applied. The first is based on the Kansa's approach, and the second is based on the Hermit...
dynamically adaptive numerical methods have been developed to find solutions for differential equations. thesubject of wavelet has attracted the interest of many researchers, especially, in finding efficient solutions fordifferential equations. wavelets have the ability to show functions at different levels of resolution. in this paper, a numerical method is proposed for solving the second pain...
Abstract. It was shown by P. J. Davis that the Newton-Cotes quadrature formula is convergent if the integrand is an analytic function that is regular in a sufficiently large region of the complex plane containing the interval of integration. In the present paper, a bound on the error of the Newton-Cotes quadrature formula for analytic functions is derived. Also the bounds on the Legendre polyno...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید