نتایج جستجو برای: galois group
تعداد نتایج: 983624 فیلتر نتایج به سال:
In this paper, the changes of representations of a group are used in order to describe its action as algebraic Galois group of an univariate polynomial on the roots of factors of any Lagrange resolvent. By this way, the Galois group of resolvent factors are pre-determinated. In follows, different applications are exposed; in particular, some classical results of algebraic Galois theory.
Hopf Galois theory expands the classical Galois theory by considering the Galois property in terms of the action of the group algebra k[G] on K/k and then replacing it by the action of a Hopf algebra. We review the case of separable extensions where the Hopf Galois property admits a group-theoretical formulation suitable for counting and classifying, and also to perform explicit computations an...
This article is concerned with Galois theory for iterative differential fields (ID-fields) in positive characteristic. More precisely, we consider purely inseparable Picard-Vessiot extensions, because these are the ones having an infinitesimal group scheme as iterative differential Galois group. In this article we prove a necessary and sufficient condition to decide whether an infinitesimal gro...
Computing the Galois group of the splitting field of a given polynomial with integer coefficients is a classical problem in modern algebra. A theorem of Van der Waerden [Wae] asserts that almost all (monic) polynomials in Z[x] have associated Galois group Sn, the symmetric group on n letters. Thus, cases where the associated Galois group is different from Sn are rare. Nevertheless, examples of ...
In 1892, D. Hilbert began what is now called Inverse Galois Theory by showing that for each positive integer m, there exists a polynomial of degree m with rational coefficients and associated Galois group Sm, the symmetric group on m letters, and there exists a polynomial of degree m with rational coefficients and associated Galois group Am, the alternating group on m letters. In the late 1920’...
We reduce the regular version of the Inverse Galois Problem for any finite group G to finding one rational point on an infinite sequence of algebraic varieties. As a consequence, any finite group G is the Galois group of an extension L/P (x) with L regular over any PAC field P of characteristic zero. A special case of this implies that G is a Galois group over Fp(x) for almost all primes p.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید