نتایج جستجو برای: gradient descent
تعداد نتایج: 137892 فیلتر نتایج به سال:
Stein variational gradient descent (SVGD) is a deterministic sampling algorithm that iteratively transports a set of particles to approximate given distributions, based on a gradient-based update that guarantees to optimally decrease the KL divergence within a function space. This paper develops the first theoretical analysis on SVGD. We establish that the empirical measures of the SVGD samples...
A new framework based on the curved Riemannian manifold is proposed to calculate the numerical solution of the Lyapunov matrix equation by using a natural gradient descent algorithm and taking the geodesic distance as the objective function. Moreover, a gradient descent algorithm based on the classical Euclidean distance is provided to compare with this natural gradient descent algorithm. Furth...
Usually gradient descent is merely a way to find a minimum, abandoned if a more efficient technique is available. Here we investigate the detailed properties of the gradient descent process, and the related topics of how gradients can be computed, what the limitations on gradient descent are, and how the second-order information that governs the dynamics of gradient descent can be probed. To de...
Machine learning has begun to play a central role in many applications. A multitude of these applications typically also involve datasets that are distributed across multiple computing devices/machines due either design constraints (e.g., multi-agent and Internet-of-Things systems) or computational/privacy reasons large-scale machine on smartphone data). Such often require the tasks be carried ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید