نتایج جستجو برای: ill posed inverse problems
تعداد نتایج: 733429 فیلتر نتایج به سال:
Based on minimizing a piecewise diierentiable lp function subject to a single inequality constraint, this paper discusses algorithms for a discretized regularization problem for ill-posed inverse problems. We examine computational challenges of solving this regularization problem. Possible minimization algorithms such as the steepest descent method, iteratively weighted least squares (IRLS) met...
The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...
While experimental design for well-posed inverse linear problems has been well studied, covering a vast range of well-established design criteria and optimization algorithms, its ill-posed counterpart is a rather new topic. The ill-posed nature of the problem entails the incorporation of regularization techniques. The consequent non-stochastic error introduced by regularization, needs to be tak...
In this article the concept of saturation of an arbitrary regularization method is formalized based upon the original idea of saturation for spectral regularization methods introduced by Neubauer [5]. Necessary and sufficient conditions for a regularization method to have global saturation are provided. It is shown that for a method to have global saturation the total error must be optimal in t...
In this paper, we clarify the relations between the existing sets of regularity conditions for convergence rates of nonparametric indirect regression (NPIR) and nonparametric instrumental variables (NPIV) regression models. We establish minimax risk lower bounds in mean integrated squared error loss for the NPIR and the NPIV models under two basic regularity conditions that allow for both mildl...
We propose a partially learned approach for the solution of ill posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularization theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularizing functional. Th...
We consider linear ill-posed inverse problems y = Ax, in which we want to infer many count parameters x from few count observations y, where the matrix A is binary and has some unimodularity property. Such problems are typical in applications such as contingency table analysis and network tomography (on which we present testing results). These properties of A have a geometrical implication for ...
Inversion of ill-posed problem from measurement data have been proposed use: i) Conjugate gradient projection method with regularization; ii) Conditional gradient method with regularization; iii) SVD with constraints with regularization method and iv) The method for solving two-dimensional integral equation of convolution type for vector functions using DFT method for Tikhonov functional. The p...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید