نتایج جستجو برای: jordan left derivation

تعداد نتایج: 338918  

2013
YANBO LI FENG WEI F. WEI

Let G = [ A M N B ] be a generalized matrix algebra defined by the Morita context (A,B,A MB,B NA,ΦMN ,ΨNM) . In this article we mainly study the question of whether there exist the so-called “proper” Jordan derivations for the generalized matrix algebra G . It is shown that if one of the bilinear pairings ΦMN and ΨNM is nondegenerate, then every antiderivation of G is zero. Furthermore, if the ...

Journal: :Int. J. Math. Mathematical Sciences 2005
Joso Vukman Irena Kosi-Ulbl

Throughout this paper, R will represent an associative ring with center Z(R). A ring R is n-torsion free, where n > 1 is an integer, in case nx = 0, x ∈ R implies x = 0. As usual the commutator xy− yx will be denoted by [x, y]. We will use basic commutator identities [xy,z] = [x,z]y + x[y,z] and [x, yz] = [x, y]z+ y[x,z]. Recall that a ring R is prime if aRb = (0) implies that either a = 0 or b...

Journal: :Int. J. Math. Mathematical Sciences 2005
Joso Vukman Irena Kosi-Ulbl

We prove in this note the following result. Let n > 1 be an integer and let R be an n!torsion-free semiprime ring with identity element. Suppose that there exists an additive mapping D : R→ R such that D(xn) =∑nj=1 xn− jD(x)x j−1is fulfilled for all x ∈ R. In this case, D is a derivation. This research is motivated by the work of Bridges and Bergen (1984). Throughout, R will represent an associ...

The main purpose of this article is to offer some characterizations of $delta$-double derivations on rings and algebras. To reach this goal, we prove the following theorem:Let $n > 1$ be an integer and let $mathcal{R}$ be an $n!$-torsion free ring with the identity element $1$. Suppose that there exist two additive mappings $d,delta:Rto R$ such that $$d(x^n) =Sigma^n_{j=1} x^{n-j}d(x)x^{j-1}+Si...

2016
Jun He Jiankui Li Guangyu An Wenbo Huang

We prove that every 2-local derivation from the algebra Mn(A)(n > 2) into its bimodule Mn(M) is a derivation, where A is a unital Banach algebra and M is a unital A-bimodule such that each Jordan derivation from A into M is an inner derivation, and that every 2-local derivation on a C*-algebra with a faithful traceable representation is a derivation. We also characterize local and 2-local Lie d...

2017
Runling An Jinchuan Hou RUNLING AN JINCHUAN HOU

Let T be a triangular ring. An additive map δ from T into itself is said to be Jordan derivable at an element Z ∈ T if δ(A)B +Aδ(B) + δ(B)A+Bδ(A) = δ(AB+BA) for any A,B ∈ T with AB + BA = Z. An element Z ∈ T is called a Jordan all-derivable point of T if every additive map Jordan derivable at Z is a Jordan derivation. In this paper, we show that some idempotents in T are Jordan all-derivable po...

2011
Alexander Wilce

This note adds to the recent spate of derivations of the probabilistic apparatus of finite-dimensional quantum theory from various axiomatic packages. We offer two different axiomatic packages that lead easily to the Jordan algebraic structure of finite-dimensional quantum theory. The derivation relies on the Koecher-Vinberg Theorem, which sets up an equivalence between order-unit spaces having...

Journal: :Journal of Computer and System Sciences 1974

2007
LYNN H. LOOMIS

A difficult step in the derivation of the strong forms of the Cauchy theorem, Green's lemma, and related theorems from the corresponding weak forms is the construction, for a given rectifiable Jordan curve J, of a sequence of Jordan polygons lying interior to / , converging to J", and having uniformly bounded lengths. This note presents what the author believes to be a simpler elementary constr...

2010
Lajos Molnár

In this note, by means of the spectrum of the generating operator, we characterize the self-adjointness and closedness of the range of a normal and a self-adjoint Jordan *-derivation, respectively.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید