نتایج جستجو برای: k means
تعداد نتایج: 702376 فیلتر نتایج به سال:
Landslide databases and input parameters used for modeling landslide hazard often contain imprecisions and uncertainties inherent in the decision-making process. Dealing with imprecision and uncertainty requires techniques that go beyond classical logic. In this paper, methods of fuzzy k -means classification were used to assign digital terrain attributes to continuous landform classes whereas ...
This paper presents the fourth participation of the SINAI group, University of Jaén, in the Photo Retrieval task at Image CLEF 2009. Our system uses only the text of the queries, and a clustering system (based on kmeans) that combines different approaches based on a different use of the cluster data of the queries. The official results shown that the combination between the title of each query ...
چکیده داده کاوی به فرایند استخراج الگوهای پنهان و یا ویژگی های جالب و مفید از مجموعه داده ها گفته می شود که با استفاده از آن می توان به تصمیم گیری و پیش بینی رفتار آینده پرداخت. خوشه بندی در داده کاوی یکی از عملیات مهم در نتیجه گیری داده-کاوی بر روی داده ها به حساب می آید. خوشه بندی افراز بندی یک گروه متنوع به تعدادی زیر گروه مشابه یا گروه بندی مجموعه-ای از اشیاء به کلاسی از اشیاء مشابه می با...
This paper introduces a straightforward generalization of the well-known LVQ1 algorithm for nearest neighbour classifiers that includes the standard LVQ1 and the k-means algorithms as special cases. It is based on a regularizing parameter that monotonically decreases the upper bound of the training classification error towards a minimum. Experiments using 10 real data sets show the utility of t...
In this study, the general ideas surrounding the k-medians problem are discussed. This involves a look into what k-medians attempts to solve and how it goes about doing so. We take a look at why k-medians is used as opposed to its k-means counterpart, specifically how its robustness enables it to be far more resistant to outliers. We then discuss the areas of study that are prevalent in the rea...
In this paper we give a first set of communication lower bounds for distributed clustering problems, in particular, for k-center, k-median and k-means. When the input is distributed across a large number of machines and the number of clusters k is small, our lower bounds match the current best upper bounds up to a logarithmic factor. We have designed a new composition framework in our proofs fo...
We propose a new clustering algorithm based upon the maximin correlation analysis (MCA), a learning technique that can minimize the maximum misclassification risk. The proposed algorithm resembles conventional partition clustering algorithms such as k-means in that data objects are partitioned into k disjoint partitions. On the other hand, the proposed approach is unique in that an MCA-based ap...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید