نتایج جستجو برای: k ricci curvature
تعداد نتایج: 419747 فیلتر نتایج به سال:
We show that Perelman’s W functional on Kahler manifolds has a natural counterpart on Sasaki manifolds. We prove, using this functional, that Perelman’s results on Kahler-Ricci flow (the first Chern class is positive) can be generalized to Sasaki-Ricci flow, including the uniform bound on the diameter and the scalar curvature along the flow. We also show that positivity of transverse bisectiona...
In this paper, we prove a general maximum principle for the time dependent Lichnerowicz heat equation on symmetric tensors coupled with the Ricci flow on complete Riemannian manifolds. As an application we construct complete manifolds with bounded nonnegative sectional curvature of dimension greater than or equal to four such that the Ricci flow does not preserve the nonnegativity of the sectio...
For a submanifold Σ ⊂ R Belkin and Niyogi showed that one can approximate the Laplacian operator using heat kernels. Using a definition of coarse Ricci curvature derived by iterating Laplacians, we approximate the coarse Ricci curvature of submanifolds Σ in the same way. More generally, on any metric measure we are able to approximate a 1-parameter family of coarse Ricci functions that include ...
which is sharp as indicated in the Euclidean case. However even if M contains a small compact region where the Ricci curvature is not nonnegative, estimate (1.1) becomes very much different from (1.2) when r is large, due to the presence of the √ k term. Whether estimate (1.2) is stable under perturbation has been an open question for some time, in light of the known stability results on weaker...
We study various transport-information inequalities under three di erent notions of Ricci curvature in the discrete setting: the curvature-dimension condition of Bakry and Émery [4], the exponential curvature-dimension condition of Bauer et al. [6] and the coarse Ricci curvature of Ollivier [38]. We prove that under a curvature-dimension condition or coarse Ricci curvature condition, an L1 tran...
Ricci curvature was proposed by Ollivier in a general framework of metric measure spaces, and it has been studied extensively in the context of graphs in recent years. In this paper we obtain the exact formulas for Ollivier’s Ricci-curvature for bipartite graphs and for the graphs with girth at least 5. These are the first formulas for Ricci-curvature that hold for a wide class of graphs, and e...
We study the structure of manifolds with almost nonnegative Ricci curvature. We prove a compact Riemannian manifold with bounded curvature, diameter bounded from above, and Ricci curvature bounded from below by an almost nonnegative real number such that the first Betti number having codimension two is an infranilmanifold or a finite cover is a sphere bundle over a torus. Furthermore, if we ass...
We prove the following estimate for the spectrum of the normalized Laplace operator ∆ on a finite graph G, 1− (1− k[t]) t ≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 + (1− k[t]) 1 t , ∀ integers t ≥ 1. Here k[t] is a lower bound for the Ollivier-Ricci curvature on the neighborhood graph G[t] (here we use the convention G[1] = G), which was introduced by Bauer-Jost. In particular, when t = 1 this is Ollivier’s esti...
In this paper, we study gradient Ricci expanding solitons (X, g) satisfying Rc = cg +Df, where Rc is the Ricci curvature, c < 0 is a constant, and Df is the Hessian of the potential function f on X . We show that for a gradient expanding soliton (X, g) with non-negative Ricci curvature, the scalar curvature R has at least one maximum point on X , which is the only minimum point of the potential...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید