نتایج جستجو برای: lie groupoid

تعداد نتایج: 46643  

1997
KIRILL C. H. MACKENZIE PING XU

We extend the calculus of multiplicative vector fields and differential forms and their intrinsic derivatives from Lie groups to Lie groupoids; this generalization turns out to include also the classical process of complete lifting from arbitrary manifolds to tangent and cotangent bundles. Using this calculus we give a new description of the Lie bialgebroid structure associated with a Poisson g...

2009
PAUL BRESSLER

In this paper we consider deformations of an algebroid stack on an étale groupoid. We construct a differential graded Lie algebra (DGLA) which controls this deformation theory. In the case when the algebroid is a twisted form of functions we show that this DGLA is quasiisomorphic to the twist of the DGLA of Hochschild cochains on the algebra of functions on the groupoid by the characteristic cl...

2004
L. Fehér

The gauge action of the Lie groupG on the chiral WZNW phase spaceMǦ of quasiperiodic fields with Ǧ-valued monodromy, where Ǧ ⊂ G is an open submanifold, is known to be a Poisson-Lie (PL) action with respect to any coboundary PL structure on G, if the Poisson bracket on MǦ is defined by a suitable monodromy dependent exchange r-matrix. We describe the momentum map for these symmetries when G is ...

Journal: :Transactions of the American Mathematical Society 2010

2009
ARI STERN

We present a discrete analog of the recently introduced Hamilton– Pontryagin variational principle in Lagrangian mechanics. This unifies two, previously disparate approaches to discrete Lagrangian mechanics: either using the discrete Lagrangian to define a finite version of Hamilton’s action principle, or treating it as a symplectic generating function. This is demonstrated for a discrete Lagra...

2008
PING XU

It is shown that a quantum groupoid (or a QUE algebroid, i.e., deformation of the universal enveloping algebra of a Lie algebroid) naturally gives rise to a Lie bialgebroid as a classical limit. The converse question, i.e., the quantization problem, is raised, and it is proved for all regular triangular Lie bialgebroids. For a Poisson manifold P , the existence of a star-product is shown to be ...

Journal: :Analysis and Mathematical Physics 2021

Essentially generalizing Lie's results, we prove that the contact equivalence groupoid of a class (1+1)-dimensional generalized nonlinear Klein-Gordon equations is first-order prolongation its point groupoid, and then carry out complete group classification this class. Since it normalized, algebraic method naturally applied here. Using specific structure class, essentially employ classical Lie ...

2015
Rui Loja Fernandes

In these lectures I discuss the Linearization Theorem for Lie groupoids, and its relation to the various classical linearization theorems for submersions, foliations and group actions. In particular, I explain in some detail the recent metric approach to this problem proposed in [6]. Mathematics Subject Classification (2010). Primary 53D17; Secondary 22A22.

1999
N. P. Landsman

A strict quantization of a Poisson manifold P on a subset I ⊆ R containing 0 as an accumulation point is defined as a continuous field of C∗-algebras {Ah̄}h̄∈I , with A0 = C0(P ), a dense subalgebra Ã0 of C0(P ) on which the Poisson bracket is defined, and a set of continuous cross-sections {Q(f )} f∈Ã0 for which Q0(f ) = f . Here Qh̄(f ∗) = Qh̄(f )∗ for all h̄ ∈ I , whereas for h̄ → 0 one requires t...

2015
CHIARA ESPOSITO

In this paper we prove rigidity theorems for Poisson Lie group actions on Poisson manifolds. In particular, we prove that close infinitesimal momentum maps associated to Poisson Lie group actions are equivalent using a normal form theorem for SCI spaces. When the Poisson structure of the acted manifold is integrable, this yields rigidity also for lifted actions to the symplectic groupoid.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید