نتایج جستجو برای: lithium ion batteries

تعداد نتایج: 251555  

Journal: :Nano letters 2013
Shubin Yang Yongji Gong Zheng Liu Liang Zhan Daniel P Hashim Lulu Ma Robert Vajtai Pulickel M Ajayan

Although lithium ion batteries have gained commercial success owing to their high energy density, they lack suitable electrodes capable of rapid charging and discharging to enable a high power density critical for broad applications. Here, we demonstrate a simple bottom-up approach toward single crystalline vanadium oxide (VO2) ribbons with graphene layers. The unique structure of VO2-graphene ...

2016
Lifeng Wu Xiaohui Fu Yong Guan Yongheng Yang

Lithium-ion batteries are the primary power source in electric vehicles, and the prognosis of their remaining useful life is vital for ensuring the safety, stability, and long lifetime of electric vehicles. Accurately establishing a mechanism model of a vehicle lithium-ion battery involves a complex electrochemical process. Remaining useful life (RUL) prognostics based on data-driven methods ha...

2014
The Nam Long Doan Kimoon Yoo Tuan K. A. Hoang P. Chen

*Correspondence: P. Chen, Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada e-mail: [email protected] Lithium-rich layered powders, Li2MnO3-stabilized LiMO2 (M=Ni, Co, Mn), are attractive cathode candidates for the next generations of high-energy lithium-ion batteries. However, most of ...

2000
Michael M. Thackeray

The materials batteries have host compositional range. used for the negative and positive electrodes of rechargeable “lithium-ion” structures that can accommodate and release lithium over a wide In these batteries, carbon and intermetallic compounds have been widely exploited as the negative electrodes, and transition metal oxides as the positive electrodes. For a lithium-ion battery to perform...

2016
Marco Amores Thomas E. Ashton Peter J. Baker Edmund J. Cussen Serena A. Corr

Lithium-stuffed garnets attract huge attention due to their outstanding potential as solid-state electrolytes for lithium batteries. However, there exists a persistent challenge in the reliable synthesis of these complex functional oxides together with a lack of complete understanding of the lithium-ion diffusion mechanisms in these important materials. Addressing these issues is critical to re...

2012
Mitsuyasu OGAWA Kentaro YOSHIDA Keizo HARADA

Lithium ion secondary batteries have a high voltage and a high energy density, as shown in Fig. 1, and are widely used in mobile devices such as cell phones, notebook PCs and PDAs. However, since lithium ion secondary batteries use a flammable organic liquid electrolyte, there is a risk of explosion or fire. Fire accidents can also occur due to contamination during production or from overchargi...

2016
Yuichi Aihara Seitaro Ito Ryo Omoda Takanobu Yamada Satoshi Fujiki Taku Watanabe Youngsin Park Seokgwang Doo

Citation: Aihara Y, Ito S, Omoda R, Yamada T, Fujiki S, Watanabe T, Park Y and Doo S (2016) The Electrochemical Characteristics and Applicability of an Amorphous Sulfide-Based Solid Ion Conductor for the Next-Generation Solid-State Lithium Secondary Batteries. Front. Energy Res. 4:18. doi: 10.3389/fenrg.2016.00018 The electrochemical characteristics and applicability of an amorphous sulfide-Bas...

Journal: :Angewandte Chemie 2013
Zhan Lin Zengcai Liu Wujun Fu Nancy J Dudney Chengdu Liang

Sulfur-rich lithium polysulfidophosphates (LPSPs) act as an enabler for long-lasting and efficient lithium-sulfur batteries. LPSPs have ionic conductivities of 3.0×10(-5)  S cm(-1) at 25 °C, which is 8 orders of magnitude higher than that of Li2S. The high lithium ion conductivity imparts excellent cycling performance, and the batteries are configured in an all-solid state, which promises safe ...

2000
X. Zhang P. N. Ross

BACKGROUND Advance Technology Development (ATD) Program is a new program put forth by Department of Energy to develop high power lithium ion batteries for hybrid electric vehicles and electric vehicles. It is a joint effort of five national labs and LBNL is the lead lab in investigating SEI (solid electrolyte interface) layer formation and dissolution. Our group is responsible for the character...

2011
Hongwei Liao Khim Karki YuHuang Wang

Heterogeneous nanostructures may offer better or new properties that are not originally present in constituting components by judiciously combining two or more different materials. For example, silicon coating on carbon nanotubes (CNTs) improves the thermal stability of carbon nanotubes by acting as a protective fi lm, [ 1 ] and silicon-coated CNT composites have been proposed as promising lith...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید