نتایج جستجو برای: mθ d set
تعداد نتایج: 1191431 فیلتر نتایج به سال:
In d-Scattered Set we are given an (edge-weighted) graph and are asked to select at least k vertices, so that the distance between any pair is at least d, thus generalizing Independent Set. We provide upper and lower bounds on the complexity of this problem with respect to various standard graph parameters. In particular, we show the following: • For any d ≥ 2, an O∗(dtw)-time algorithm, where ...
We develop an extension of recently developed methods for obtaining time-space tradeoff lower bounds for problems of learning from random test samples to handle the situation where the space of tests is signficantly smaller than the space of inputs, a class of learning problems that is not handled by prior work. This extension is based on a measure of how matrices amplify the 2-norms of probabi...
a graph is called textit{circulant} if it is a cayley graph on a cyclic group, i.e. its adjacency matrix is circulant. let $d$ be a set of positive, proper divisors of the integer $n>1$. the integral circulant graph $icg_{n}(d)$ has the vertex set $mathbb{z}_{n}$ and the edge set e$(icg_{n}(d))= {{a,b}; gcd(a-b,n)in d }$. let $n=p_{1}p_{2}cdots p_{k}m$, where $p_{1},p_{2},cdots,p_{k}$ are disti...
For a finite abelian group G ⊂ GL(n, k), we describe the coherent component Yθ of the moduli space Mθ of θ-stable McKay quiver representations. This is a not-necessarily-normal toric variety that admits a projective birational morphism Yθ → Ak /G obtained by variation of GIT quotient. As a special case, this gives a new construction of Nakamura’s G-Hilbert scheme Hilb that avoids the (typically...
We introduce the notion of uniform number of a graph. The uniform number of a connected graph $G$ is the least cardinality of a nonempty subset $M$ of the vertex set of $G$ for which the function $f_M: M^crightarrow mathcal{P}(X) - {emptyset}$ defined as $f_M(x) = {D(x, y): y in M}$ is a constant function, where $D(x, y)$ is the detour distance between $x$ and $y$ in $G$ and $mathcal{P}(X)$ ...
Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The first, second and third Zagreb indices of G are respectivly defined by: $M_1(G)=sum_{uin V} d(u)^2, hspace {.1 cm} M_2(G)=sum_{uvin E} d(u).d(v)$ and $ M_3(G)=sum_{uvin E}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in G and uv is an edge of G connecting the vertices u and v. Recently, the first and second m...
A total dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every vertex of $G$ has a neighbor in $D$. The total domination number of a graph $G$, denoted by $gamma_t(G)$, is~the minimum cardinality of a total dominating set of $G$. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International ournal of Graphs and Combinatorics 1 (2004), 6...
a total dominating set of a graph $g$ is a set $d$ of vertices of $g$ such that every vertex of $g$ has a neighbor in $d$. the total domination number of a graph $g$, denoted by $gamma_t(g)$, is~the minimum cardinality of a total dominating set of $g$. chellali and haynes [total and paired-domination numbers of a tree, akce international ournal of graphs and combinatorics 1 (2004), 6...
Abstract: Consider a random vector (X, Y ) and let m(x) = E(Y |X = x). We are interested in testing H0 : m ∈ MΘ,G = {γ(·, θ, g) : θ ∈ Θ, g ∈ G} for some known function γ, some compact set Θ ⊂ IR and some function set G of real valued functions. Specific examples of this general hypothesis include testing for a parametric regression model, a generalized linear model, a partial linear model, a si...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید