The genus g of an Fq2-maximal curve satisfies g = g1 := q(q − 1)/2 or g ≤ g2 := ⌊(q − 1) /4⌊. Previously, Fq2 -maximal curves with g = g1 or g = g2, q odd, have been characterized up to Fq2 -isomorphism. Here it is shown that an Fq2 -maximal curve with genus g2, q even, is Fq2 -isomorphic to the nonsingular model of the plane curve ∑t i=1 y q/2 = x, q = 2, provided that q/2 is a Weierstrass non...