نتایج جستجو برای: multi label data

تعداد نتایج: 2803845  

2016
Peng Cao Xiaoli Liu Dazhe Zhao Osmar R. Zaïane

Multi-label data classification has become an important and active research topic, where the classification algorithm is required to deal with prediction of sets of label indicators for instances simultaneously. Label powerset (LP) method reduces the multi-label classification problem to a single-label multi-class classification problem by treating each distinct combination of labels. However, ...

2013
Maria Oikonomou Anastasios Tefas

Multi-label problems arise in different domains such as digital media analysis and description, text categorization, multi-topic web page categorization, image and video annotation etc. Such a situation arises when the data are associated with multiple labels simultaneously. Similar to single label problems, multi label problems also suffer from high dimensionality as multi label data often hap...

2016
Everton Alvares Cherman Grigorios Tsoumakas Maria Carolina Monard

The iterative supervised learning setting, in which learning algorithms can actively query an oracle for labels, e.g. a human annotator that understands the nature of the problem, is called active learning. As the learner is allowed to interactively choose the data from which it learns, it is expected that the learner would perform better with less training. The active learning approach is appr...

Journal: :IEEE Intelligent Informatics Bulletin 2014
Damien Zufferey

We report on a probabilistic approach for the classification of chronically ill patients. We rely on multi-label learning for its ability to represent in a natural way classification problems involving coexistence of diseases. We use a public clinical database for the evaluation of our proposed algorithm. Preliminary results show the benefits of our approach.

2013
Xin Li Yuhong Guo

Multi-label classification, where each instance is assigned to multiple categories, is a prevalent problem in data analysis. However, annotations of multi-label instances are typically more timeconsuming or expensive to obtain than annotations of single-label instances. Though active learning has been widely studied on reducing labeling effort for single-label problems, current research on mult...

Journal: :CLEI Electron. J. 2011
Everton Alvares Cherman Maria Carolina Monard Jean Metz

Traditional classification algorithms consider learning problems that contain only one label, i.e., each example is associated with one single nominal target variable characterizing its property. However, the number of practical applications involving data with multiple target variables has increased. To learn from this sort of data, multi-label classification algorithms should be used. The tas...

Journal: :Fundam. Inform. 2015
Nicolas Anciaux Danae Boutara Benjamin Nguyen Michalis Vazirgiannis

Administrative services such social care, tax reduction, and many others using complex decision processes, request individuals to provide large amounts of private data items, in order to calibrate their proposal to the specific situation of the applicant. This data is subsequently processed and stored by the organization. However, all the requested information is not needed to reach the same de...

Journal: :Journal of Machine Learning Research 2016
Jesse Read Peter Reutemann Bernhard Pfahringer Geoff Holmes

Multi-label classification has rapidly attracted interest in the machine learning literature, and there are now a large number and considerable variety of methods for this type of learning. We present Meka: an open-source Java framework based on the well-known Weka library. Meka provides interfaces to facilitate practical application, and a wealth of multi-label classifiers, evaluation metrics,...

2016
Ling Jian Jundong Li Kai Shu Huan Liu

Multi-label learning has been extensively studied in the area of bioinformatics, information retrieval, multimedia annotation, etc. In multi-label learning, each instance is associated with multiple interdependent class labels, the label information can be noisy and incomplete. In addition, multi-labeled data often has high-dimensional noisy, irrelevant and redundant features. As an effective d...

2012
Peng Wang Peng Zhang Li Guo

Data stream classification has drawn increasing attention from the data mining community in recent years, where a large number of stream classification models were proposed. However, most existing models were merely focused on mining from single-label data streams. Mining from multi-label data streams has not been fully addressed yet. On the other hand, although some recent work touched the mul...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید