نتایج جستجو برای: newton cotes formula
تعداد نتایج: 111465 فیلتر نتایج به سال:
In this paper a higher-order numerical solution of a non-linear Volterra integro-differential equation is discussed. Example of this question has been solved numerically using the Runge-Kutta-Verner method for Ordinary Differential Equation (ODE) part and Newton-Cotes formulas for integral parts.
Interactions are explored through the observation of the dynamics of particles. On the classical level the basic underlying assumption in that scheme is that Newton's second law holds. Relaxing the validity of this axiom by, e.g., allowing for higher order time derivatives in the equations of motion would allow for a more general structure of interactions. We derive the structure of interaction...
hybrid of rationalized haar functions are developed to approximate the solution of the differential equations. the properties of hybrid functions which are the combinations of block-pulse functions and rationalized haar functions are first presented. these properties together with the newton-cotes nodes are then utilized to reduce the differential equations to the solution of algebraic equation...
A function and its first two derivatives are estimated by convolutions with well-chosen non-differentiable kernels. The convolutions are in turn approximated by Newton–Cotes integration techniques with the aid of a polynomial interpolation based on an arbitrary finite set of points. Precise numerical results are obtained with far fewer points than that in classic SPH, and error bounds are deriv...
In this paper, we use parametric form of fuzzy number, then feed-forward neural network is presented for obtaining approximate solution for fuzzy Fredholm integro-differential equation of the second kind. This paper presents a method based on neural networks and Newton-Cotes methods with positive coefficient. The ability of neural networks in function approximation is our main objective. The pr...
We study the kernels of the remainder term Rn,s(f) of GaussTurán quadrature formulas ∫ 1 −1 f(t)w(t) dt = n ∑
Our paper reviews Kallay’s results on a geometric version of the classic Newton-Raphson method, in the context of plane curve queries, e.g. curve-curve intersection, point-curve distance computation. Variants of the geometric Newton-Raphson methods are proposed and empirically verified.
We discuss a recursive family of iterative methods for the numerical approximation of roots of nonlinear functions in one variable. These methods are based on Newton-Cotes closed quadrature rules. We prove that when a quadrature rule with n+ 1 nodes is used the resulting iterative method has convergence order at least n+ 2, starting with the case n = 0 (which corresponds to the Newton’s method).
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید