نتایج جستجو برای: nilpotent

تعداد نتایج: 4794  

2003
Alfred G. Noël

This paper describes an algorithm for computing maximal tori of the reductive centralizer of a nilpotent element of an exceptional complex symmetric space. It illustrates also a good example of the use of Computer Algebra Systems to help answer important questions in the field of pure mathematics. Such tori play a fundamental rôle in several problems such as: classification of nilpotent orbits ...

Journal: :Electr. J. Comb. 2012
Andreas Distler J. D. Mitchell

A semigroup is nilpotent of degree 3 if it has a zero, every product of 3 elements equals the zero, and some product of 2 elements is non-zero. It is part of the folklore of semigroup theory that almost all finite semigroups are nilpotent of degree 3. We give formulae for the number of nilpotent semigroups of degree 3 on a set with n ∈ N elements up to equality, isomorphism, and isomorphism or ...

1999
MARK KRUPNIK Mark Krupnik

Nonnegative nilpotent lower triangular completions of a nonnegative nilpotent matrix are studied. It is shown that for every natural number between the index of the matrix and its order, there exists a completion that has this number as its index. A similar result is obtained for the rank. However, unlike the case of complex completions of complex matrices, it is proved that for every nonincrea...

2006
ROBERT YOUNG

A homogeneous nilpotent Lie group has a scaling automorphism determined by a grading of its Lie algebra. Many proofs of upper bounds for the Dehn function of such a group depend on being able to fill curves with discs compatible with this grading; the area of such discs changes predictably under the scaling automorphism. In this paper, we present combinatorial methods for finding such bounds. U...

2013
Jennifer Randall

Theorem 1 gives an explicit formula for the heat kernel on an H -type group. Folland (2] has shown that for stratified nilpotent Lie groups the heat semigroup is a semigroup of kernel operators on LP, 1 5 p < oo and on Co. Cygan (1] has obtained formulas for heat kernels for any two step nilpotent simply connected Lie group. Cygan found the heat kernel for a free simply connected two step nilpo...

2008
Y. NIKOLAYEVSKY

An Einstein nilradical is a nilpotent Lie algebra, which can be the nilradical of a metric Einstein solvable Lie algebra. The classification of Riemannian Einstein solvmanifolds (possibly, of all noncompact homogeneous Einstein spaces) can be reduced to determining, which nilpotent Lie algebras are Einstein nilradicals and to finding, for every Einstein nilradical, its Einstein metric solvable ...

2007
Arturo Magidin A. Magidin

The concept of dominion (in the sense of Isbell) is investigated in several varieties of nilpotent groups. A complete description of dominions in the variety of nilpotent groups of class at most 2 is given, and used to prove nontriviality of dominions in the variety of nilpotent groups of class at most c for any c>1 . Some subvarieties of N2 , and the variety of all nilpotent groups of class at...

2017
Abraham Berman Mark Krupnik MARK KRUPNIK

Nonnegative nilpotent lower triangular completions of a nonnegative nilpotent matrix are studied. It is shown that for every natural number between the index of the matrix and its order, there exists a completion that has this number as its index. A similar result is obtained for the rank. However, unlike the case of complex completions of complex matrices, it is proved that for every nonincrea...

2006
CLINT GIVENS

Introduction. A long-standing problem in group theory is to determine the number of non-isomorphic groups of a given order. The inverse problem–determining the orders for which there are a given number of groups–has received considerably less attention. In this note, we will give a characterization of those positive integers n for which there exist exactly 2 distinct groups of order n (up to is...

2010
EUGENE SCHENKMAN

We shall say that an automorphism a is nilpotent or acts nilpotently on a group G if in the holomorph H= [G](a) of G with a, a is a bounded left Engel element, that is, [H, ¿a] = l for some natural number ¿. Here [H, ka] means [H, (k — l)a] with [H, Oa] denoting H. Let G' denote the commutator subgroup [G, G], and let $(G) denote the Frattini subgroup of G. If a is an automorphism of a nilpoten...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید