نتایج جستجو برای: non negative matrix factorization

تعداد نتایج: 2092099  

2006
Daoqiang Zhang Zhi-Hua Zhou Songcan Chen

In this paper, we extend the original non-negative matrix factorization (NMF) to kernel NMF (KNMF). The advantages of KNMF over NMF are: 1) it could extract more useful features hidden in the original data through some kernel-induced nonlinear mappings; 2) it can deal with data where only relationships (similarities or dissimilarities) between objects are known; 3) it can process data with nega...

Journal: :Journal of Machine Learning Research 2004
Patrik O. Hoyer

Non-negative matrix factorization (NMF) is a recently developed technique for finding parts-based, linear representations of non-negative data. Although it has successfully been applied in several applications, it does not always result in parts-based representations. In this paper, we show how explicitly incorporating the notion of ‘sparseness’ improves the found decompositions. Additionally, ...

Journal: :Computational & Mathematical Organization Theory 2005
Michael W. Berry Murray Browne

In this study, we apply a non-negative matrix factorization approach for the extraction and detection of concepts or topics from electronic mail messages. For the publicly released Enron electronic mail collection, we encode sparse term-by-message matrices and use a low rank non-negative matrix factorization algorithm to preserve natural data non-negativity and avoid subtractive basis vector an...

2000
Daniel D. Lee H. Sebastian Seung

Non-negative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minimize the conventional least squares error while the other minimizes the generalized Kullback-Leibler d...

Journal: :IJSIR 2011
Andreas Janecek Ying Tan

The Non-negative Matrix Factorization (NMF) is a special low-rank approximation which allows for an additive parts-based and interpretable representation of the data. This article presents efforts to improve the convergence, approximation quality, and classification accuracy of NMF using five different meta-heuristics based on swarm intelligence. Several properties of the NMF objective function...

2016
Chiranjib Bhattacharyya Navin Goyal Ravi Kannan Jagdeep Pani

The Noisy Non-negative Matrix factorization (NMF) is: given a data matrix A (d × n), find non-negative matrices B,C (d × k, k × n respy.) so that A = BC + N , where N is a noise matrix. Existing polynomial time algorithms with proven error guarantees require each column N·,j to have l1 norm much smaller than ||(BC)·,j ||1, which could be very restrictive. In important applications of NMF such a...

2016
Wei Qian Bin Hong Deng Cai Xiaofei He Xuelong Li

Non-negative Matrix Factorization (NMF) has received considerable attentions in various areas for its psychological and physiological interpretation of naturally occurring data whose representation may be parts-based in the human brain. Despite its good practical performance, one shortcoming of original NMF is that it ignores intrinsic structure of data set. On one hand, samples might be on a m...

2010
Jan Platos Petr Gajdos Pavel Krömer Václav Snásel

Today, the need of large data collection processing increase. Such type of data can has very large dimension and hidden relationships. Analyzing this type of data leads to many errors and noise, therefore, dimension reduction techniques are applied. Many techniques of reduction were developed, e.g. SVD, SDD, PCA, ICA and NMF. Non-negative matrix factorization (NMF) has main advantage in process...

Journal: :Image Vision Comput. 2012
B. G. Vijay Kumar Irene Kotsia Ioannis Patras

In this paper we introduce a supervised, maximum margin framework for linear and non-linear Non-negative Matrix Factorization. By contrast to existing methods in which the matrix factorization phase (i.e. the feature extraction phase) and the classification phase are separated, we incorporate the maximum margin classification constraints within the NMF formulation. This results to a non-convex ...

Journal: :CoRR 2012
Naiyang Guan Dacheng Tao Zhigang Luo John Shawe-Taylor

Non-negative matrix factorization (NMF) approximates a non-negative matrix X by a product of two non-negative low-rank factor matrices W and H . NMF and its extensions minimize either the Kullback-Leibler divergence or the Euclidean distance between X and WH to model the Poisson noise or the Gaussian noise. In practice, when the noise distribution is heavy tailed, they cannot perform well. This...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید