نتایج جستجو برای: normalized signless laplacian matrix
تعداد نتایج: 418773 فیلتر نتایج به سال:
For n ≥ 11, we determine all the unicyclic graphs on n vertices whose signless Laplacian spectral radius is at least n− 2. There are exactly sixteen such graphs and they are ordered according to their signless Laplacian spectral radii.
In 1962, Erdős gave a sufficient condition for Hamilton cycles in terms of the vertex number, edge number, and minimum degree of graphs which generalized Ore’s theorem. One year later, Moon and Moser gave an analogous result for Hamilton cycles in balanced bipartite graphs. In this paper we present the spectral analogues of Erdős’ theorem and Moon-Moser’s theorem, respectively. Let Gk n be the ...
In the first part of this paper, we survey results that are associated with three types of Laplacian matrices:difference, normalized, and signless. We derive eigenvalue and eigenvector formulaes for paths and cycles using circulant matrices and present an alternative proof for finding eigenvalues of the adjacency matrix of paths and cycles using Chebyshev polynomials. Even though each results i...
Several inequalities on vertex degrees, eigenvalues, Laplacian eigen-values, and signless Laplacian eigenvalues of graphs are presented in this note. Some of them are generalizations of the inequalities in [2]. We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow that in [1]. We use [n] to denote the set of { 1, 2, ..., n}. ...
Let G be a graph of order n such that ∑n i=0(−1)iaiλn−i and ∑n i=0(−1)ibiλn−i are the characteristic polynomials of the signless Laplacian and the Laplacian matrices of G, respectively. We show that ai ≥ bi for i = 0,1, . . . , n. As a consequence, we prove that for any α, 0 < α ≤ 1, if q1, . . . , qn and μ1, . . . ,μn are the signless Laplacian and the Laplacian eigenvalues of G, respectively,...
Let qmin(G) stand for the smallest eigenvalue of the signless Laplacian of a graph G of order n: This paper gives some results on the following extremal problem: How large can qmin (G) be if G is a graph of order n; with no complete subgraph of order r + 1? It is shown that this problem is related to the well-known topic of making graphs bipartite. Using known classical results, several bounds ...
We consider the problem of determining the Q–integral graphs, i.e. the graphs with integral signless Laplacian spectrum. First, we determine some infinite series of such graphs having the other two spectra (the usual one and the Laplacian) integral. We also completely determine all (2, s)–semiregular bipartite graphs with integral signless Laplacian spectrum. Finally, we give some results conce...
A graph is said to be determined by its signless Laplacian spectrum if there is no other non-isomorphic graph with the same spectrum. In this paper, it is shown that each starlike tree with maximum degree 4 is determined by its signless Laplacian spectrum.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید