نتایج جستجو برای: oxidizing bacterium

تعداد نتایج: 55621  

Journal: :Journal of bacteriology 2012
Soo-Je Park Rohit Ghai Ana-Belén Martín-Cuadrado Francisco Rodríguez-Valera Man-Young Jung Jong-Geol Kim Sung-Keun Rhee

Sulfur-oxidizing bacteria are common microorganisms in a variety of sulfide-rich environments. They play important roles in the global sulfur cycle on earth. Here, we present a high-quality draft genome sequence of a sulfur-oxidizing bacterium, "Candidatus Sulfurovum sediminum" strain AR, which belongs to the class Epsilonproteobacteria and dominated an enrichment culture from a marine sediment...

2016
Yuhui Li Yehao Liu Huifang Tan Yifeng Zhang Mei Yue

Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe(2+) or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe(2+) oxidization and H⁺ production were evaluated. Second,...

Journal: :The Journal of biological chemistry 2014
Wouter J Maalcke Andreas Dietl Sophie J Marritt Julea N Butt Mike S M Jetten Jan T Keltjens Thomas R M Barends Boran Kartal

Nitric oxide is an important molecule in all domains of life with significant biological functions in both pro- and eukaryotes. Anaerobic ammonium-oxidizing (anammox) bacteria that contribute substantially to the release of fixed nitrogen into the atmosphere use the oxidizing power of NO to activate inert ammonium into hydrazine (N2H4). Here, we describe an enzyme from the anammox bacterium Kue...

Journal: :Journal of bacteriology 1966
P Margalith M Silver D G Lundgren

Margalith, P. (Syracuse University, Syracuse, N.Y.), Marvin Silver, and D. G. Lundgren. Sulfur oxidation by the iron bacterium Ferrobacillus ferrooxidans. J. Bacteriol. 92:1706-1709. 1966.-Sulfur and iron oxidation has been studied manometrically by use of Ferrobacillus ferrooxidans grown on either elemental sulfur or ferrous iron as the primary energy source. The iron-oxidizing enzyme was show...

Journal: :Applied and environmental microbiology 2008
Pilar Junier Ok-Sun Kim Ora Hadas Johannes F Imhoff Karl-Paul Witzel

The effect of primer specificity for studying the diversity of ammonia-oxidizing betaproteobacteria (betaAOB) was evaluated. betaAOB represent a group of phylogenetically related organisms for which the 16S rRNA gene approach is especially suitable. We used experimental comparisons of primer performance with water samples, together with an in silico analysis of published sequences and a literat...

2015
Helge-André Erikstad Nils-Kåre Birkeland

"Candidatus Methylacidiphilum kamchatkense" strain Kam1 is an aerobic methane-oxidizing thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. It was recovered from an acidic geothermal site in Uzon Caldera, Kamchatka, Russian Federation. Its genome possesses three complete pmoCAB gene clusters encoding particulate methane monooxygenase enzymes and a complete Calvin-Benson-Bassham...

Journal: :Journal of bacteriology 2010
Hiroyuki Arai Haruna Kanbe Masaharu Ishii Yasuo Igarashi

Hydrogenobacter thermophilus is a thermophilic, obligately chemolithoautotrophic and aerobic hydrogen-oxidizing bacterium. It is unique in its ability to fix carbon dioxide via the reductive tricarboxylic acid cycle under aerobic conditions. It utilizes molecular hydrogen, elemental sulfur, or thiosulfate as the sole energy source. Here, we report the complete genome sequence of H. thermophilus...

2016
Jessica A. Kozlowski K. Dimitri Kits Lisa Y. Stein

The complete genome sequence of Nitrosomonas communis strain Nm2, a mesophilic betaproteobacterial ammonia oxidizer isolated from Mediterranean soils in Corfu, Greece, is reported here. This is the first genome to describe a cluster 8 Nitrosomonas species and represents an ammonia-oxidizing bacterium commonly found in terrestrial ecosystems.

Journal: :Applied and environmental microbiology 2011
David G Wahman Mary Jo Kirisits Lynn E Katz Gerald E Speitel

Ammonia-oxidizing bacteria (AOB) in nitrifying biofilters degrading four regulated trihalomethanes-trichloromethane, bromodichloromethane, dibromochloromethane, and tribromomethane-were related to Nitrosomonas oligotropha. N. oligotropha is associated with chloraminated drinking water systems, and its presence in the biofilters might indicate that trihalomethane tolerance is another reason that...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید