نتایج جستجو برای: pepc

تعداد نتایج: 297  

Journal: :Plant & cell physiology 2006
Srinath Rao Julia Reiskind George Bowes

The submersed monocot, Hydrilla verticillata (L.f.) Royle, is a facultative C(4) NADP-malic enzyme (NADP-ME) plant in which the C(4) and Calvin cycles co-exist in the same cell. Futile cycling is avoided by an intracellular separation of carboxylases between the cytosol and chloroplasts. Of the two sequenced H. verticillata phosphoenolpyruvate carboxylase (PEPC) isoforms, hvpepc3 and hvpepc4, t...

Journal: :Proceedings of the National Academy of Sciences of the United States of America 1991
J Jiao C Echevarría J Vidal R Chollet

Maize leaf phosphoenolpyruvate carboxylase [PEPC; orthophosphate:oxaloacetate carboxy-lyase (phosphorylating), EC 4.1.1.31] protein-serine kinase (PEPC-PK) phosphorylates serine-15 of its target enzyme, thus leading to an increase in catalytic activity and a concomitant decrease in malate sensitivity of this cytoplasmic C4 photosynthesis enzyme in the light. We have recently demonstrated that t...

Journal: :Plant physiology 2008
R Glen Uhrig Brendan O'Leary H Elizabeth Spang Justin A MacDonald Yi-Min She William C Plaxton

The phosphoenolpyruvate carboxylase (PEPC) interactome of developing castor oil seed (COS; Ricinus communis) endosperm was assessed using coimmunopurification (co-IP) followed by proteomic analysis. Earlier studies suggested that immunologically unrelated 107-kD plant-type PEPCs (p107/PTPC) and 118-kD bacterial-type PEPCs (p118/BTPC) are subunits of an unusual 910-kD hetero-octameric class 2 PE...

Journal: :Plant physiology 1993
N. Bakrim J. L. Prioul E. Deleens J. P. Rocher M. Arrio-Dupont J. Vidal P. Gadal R. Chollet

C4 leaf phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is subject to a day/night regulatory phosphorylation cycle. By using the cytoplasmic protein synthesis inhibitor cycloheximide (CHX), we previously reported that the reversible in vivo light activation of the C4 PEPC protein-serine kinase requires protein synthesis. In the present leaf gas-exchange study, we have examined how and to wh...

Journal: :Plant physiology 2013
Michael W Shane Eric T Fedosejevs William C Plaxton

Accumulating evidence indicates important functions for phosphoenolpyruvate (PEP) carboxylase (PEPC) in inorganic phosphate (Pi)-starved plants. This includes controlling the production of organic acid anions (malate, citrate) that are excreted in copious amounts by proteoid roots of nonmycorrhizal species such as harsh hakea (Hakea prostrata). This, in turn, enhances the bioavailability of min...

Journal: :Plant physiology 1992
J A Jiao R Chollet

C(4) phosphoenolpyruvate carboxylase (PEPC) is post-translationally regulated by reversible phosphorylation of a specific N-terminal seryl residue in response to light/dark transitions of the parent leaf tissue. The protein-serine kinase (PEPC-PK) that phosphorylates/activates this mesophyll-cytoplasm target enzyme is slowly, but strikingly, activated by high light and inactivated in darkness i...

Journal: :Journal of experimental botany 2008
Tatsuya Endo Yuko Mihara Tsuyoshi Furumoto Hiroyoshi Matsumura Yasushi Kai Katsura Izui

Introducing a C(4)-like pathway into C(3) plants is one of the proposed strategies for the enhancement of photosynthetic productivity. For this purpose it is necessary to provide each component enzyme that exerts strong activity in the targeted C(3) plants. Here, a maize C(4)-form phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) was engineered for its regulatory and catalytic properties so a...

Journal: :Plant physiology 1998
Smith Langdale Chollet

We used a pale-green maize (Zea mays L.) mutant that fails to accumulate ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to test the working hypothesis that the regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase (PEPC) by its Ca2+-insensitive protein-serine/threonine kinase (PEPC kinase) in the C4 mesophyll cytosol depends on cross-talk with a functional Calvin cycle in ...

Journal: :Plant physiology 2015
Ryan A Boyd Anthony Gandin Asaph B Cousins

The photosynthetic assimilation of CO2 in C4 plants is potentially limited by the enzymatic rates of Rubisco, phosphoenolpyruvate carboxylase (PEPc), and carbonic anhydrase (CA). Therefore, the activity and kinetic properties of these enzymes are needed to accurately parameterize C4 biochemical models of leaf CO2 exchange in response to changes in CO2 availability and temperature. There are cur...

Journal: :Journal of experimental botany 2003
A B Cousins N R Adam G W Wall B A Kimball P J Pinter M J Ottman S W Leavitt A N Webber

The developmental pattern of C4 expression has been well characterized in maize and other C4 plants. However, few reports have explored the possibility that the development of this pathway may be sensitive to changes in atmospheric CO2 concentrations. Therefore, both the structural and biochemical development of leaf tissue in the fifth leaf of Sorghum bicolor plants grown at elevated CO2 have ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید