نتایج جستجو برای: runge
تعداد نتایج: 4473 فیلتر نتایج به سال:
Although Runge–Kutta and partitioned Runge–Kutta methods are known to formally satisfy discrete multisymplectic conservation laws when applied to multi-Hamiltonian PDEs, they do not always lead to well-defined numerical methods. We consider the case study of the nonlinear Schrödinger equation in detail, for which the previously known multisymplectic integrators are fully implicit and based on t...
This paper investigates numerical methods for direct decoupled sensitivity and discrete adjoint sensitivity analysis of stiff systems based on implicit Runge Kutta schemes. Efficient implementations of tangent linear and adjoint schemes are discussed for two families of methods: fully implicit three-stage Runge Kutta and singly diagonally-implicit Runge Kutta. High computational efficiency is a...
Strong stability preserving (SSP) high order Runge–Kutta time discretizations were developed for use with semi-discrete method of lines approximations of hyperbolic partial differential equations, and have proven useful in many other applications. These high order time discretization methods preserve the strong stability properties of first order explicit Euler time stepping. In this paper we a...
Block Runge-Kutta formulae suitable for the approximate numerical integration of initial value problems for first order systems of ordinary differential equations are derived. Considered in detail are the problems of varying both order and stepsize automatically. This leads to a class of variable order block explicit Runge-Kutta formulae for the integration of nonstiff problems and a class of v...
Practical, structure-preserving methods for integrating classical Heisenberg spin systems are discussed. Two new integrators are derived and compared, including (1) a symmetric energy and spin-length preserving integrator based on a Red-Black splitting of the spin sites combined with a staggered timestepping scheme and (2) a (Lie-Poisson) symplectic integrator based on Hamiltonian splitting. Th...
Abstract. Space discretization of some time-dependent partial differential equations gives rise to stiff systems of ordinary differential equations. In this case, implicit methods should be used and therefore, in general, nonlinear systems must be solved. The solutions to these systems are approximated by iterative schemes and, in order to obtain an efficient code, good initializers should be u...
We construct A-stable and L-stable diagonally implicit Runge-Kutta methods of which the diagonal vector in the Butcher matrix has a minimal maximum norm. If the implicit Runge-Kutta relations are iteratively solved by means of the approximately factorized Newton process, then such iterated Runge-Kutta methods are suitable methods for integrating shallow water problems in the sense that the stab...
In this paper a new embedded Singly Diagonally Implicit Runge-Kutta Nystrom fourth order in fifth order method for solving special second order initial value problems is derived. A standard set of test problems are tested upon and comparisons on the numerical results are made when the same set of test problems are reduced to first order systems and solved using the existing embedded diagonally ...
Although Runge–Kutta and partitioned Runge–Kutta methods are known to formally satisfy discrete multisymplectic conservation laws when applied to multi-Hamiltonian PDEs, they do not always lead to well-defined numerical methods. We consider the case study of the nonlinear Schrödinger equation in detail, for which the previously known multisymplectic integrators are fully implicit and based on t...
This study utilized combination of phase plots,time steps distribution and adaptive time steps Runge-Kutta and f if th order algorithms to investigate a harmonically Duff ing oscillator.The object is to visually compare fourth and f if th order Runge-Kutta algorithms performance as tools for seeking the chaotic solutions of a harmonically excited Duffing oscillator.Though fif th order algorithm...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید