نتایج جستجو برای: scalar flag curvature

تعداد نتایج: 91639  

2001
AUREL BEJANCU HANI REDA FARRAN H. R. FARRAN

We prove that any simply connected and complete Riemannian manifold, on which a Randers metric of positive constant flag curvature exists, must be diffeomorphic to an odd-dimensional sphere, provided a certain 1-form vanishes on it. 1. Introduction. The geometry of Finsler manifolds of constant flag curvature is one of the fundamental subjects in Finsler geometry. Akbar-Zadeh [1] proved that, u...

2017
R. L. Bryant P. Foulon S. Ivanov V. S. Matveev W. Ziller

We study non-reversible Finsler metrics with constant flag curvature 1 on S and show that the geodesic flow of every such metric is conjugate to that of one of Katok’s examples, which form a 1-parameter family. In particular, the length of the shortest closed geodesic is a complete invariant of the geodesic flow. We also show, in any dimension, that the geodesic flow of a Finsler metrics with c...

Journal: :Journal of the London Mathematical Society 2022

For any G $G$ -invariant metric on a compact homogeneous space M = / K $M=G/K$ , we give formula for the Lichnerowicz Laplacian restricted to of all symmetric 2-tensors in terms structural constants $G/K$ . As an application, compute spectrum Einstein metrics most generalized Wallach spaces and flag manifold with b 2 ( ) 1 $b_2(M)=1$ This allows deduce -stability critical point types each such ...

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

E. Peyghan

In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.

2008
C. DUVAL

The flag curvature of the Numata Finsler structures is shown to admit a nontrivial prolongation to the one-dimensional case, revealing an unexpected link with the Schwarzian derivative of the diffeomorphisms associated with these Finsler structures. Mathematics Subject Classification 2000: 58B20, 53A55 1 Finsler structures in a nutshell 1.1 Finsler metrics A Finsler structure is a pair (M,F ) w...

Journal: :journal of sciences, islamic republic of iran 2012
e. peyghan

in this paper, we study a special class of generalized douglas-weyl metrics whose douglas curvature is constant along any finslerian geodesic. we prove that for every landsberg metric in this class of finsler metrics, ? = 0 if and only if h = 0. then we show that every finsler metric of non-zero isotropic flag curvature in this class of metrics is a riemannian if and only if ? = 0.

Journal: :Results in Mathematics 2022

Abstract The main result of this paper is an expression the flag curvature a submanifold Randers–Minkowski space $$({\mathscr {V}},F)$$ ( V , F ) in terms invariants related to its Zermelo data ( h , W ). More precisely...

2008
M. BROZOS-VÁZQUEZ

We show any Riemannian curvature model can be geometrically realized by a manifold with constant scalar curvature. We also show that any pseudo-Hermitian curvature model, para-Hermitian curvature model, hyperpseudo-Hermitian curvature model, or hyper-para-Hermitian curvature model can be realized by a manifold with constant scalar and ⋆-scalar curvature.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید