نتایج جستجو برای: sparse structured principal component analysis

تعداد نتایج: 3455761  

Journal: :Applied Mathematics & Information Sciences 2013

Journal: :Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2020

2016
Inci M. Baytas Kaixiang Lin Fei Wang Anil K. Jain Jiayu Zhou

Principal component analysis (PCA) is a dimensionality reduction and data analysis tool commonly used in many areas. The main idea of PCA is to represent high-dimensional data with a few representative components that capture most of the variance present in the data. However, there is an obvious disadvantage of traditional PCA when it is applied to analyze data where interpretability is importa...

2018
N. Benjamin Erichson Peng Zeng Krithika Manohar Steven L. Brunton J. Nathan Kutz Aleksandr Y. Aravkin

Sparse principal component analysis (SPCA) has emerged as a powerful technique for modern data analysis. We discuss a robust and scalable algorithm for computing sparse principal component analysis. Specifically, we model SPCA as a matrix factorization problem with orthogonality constraints, and develop specialized optimization algorithms that partially minimize a subset of the variables (varia...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید