نتایج جستجو برای: spline collocation method
تعداد نتایج: 1640687 فیلتر نتایج به سال:
We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.
A collocation method based on optimal nodal splines is presented for the numerical solution of linear Volterra integral equations of the second kind with weakly singular kernel. Since the considered spline operator is a bounded projector we can prove that, for sequences of locally uniform meshes, the approximate solution error converges to zero at exactly the same optimal rate as the spline app...
A nonlinear Dirichlet boundary value problem is approximated by an orthogonal spline collocation scheme using piecewise Hermite bicubic functions. Existence, local uniqueness, and error analysis of the collocation solution and convergence of Newton’s method are studied. The mesh independence principle for the collocation problem is proved and used to develop an efficient multilevel solution met...
In this paper, an approach based on statistical spline model (SSM) and collocation method is proposed to solve Volterra-Fredholm integral equations. The set of collocation nodes is chosen so that the points yield minimal error in the nodal polynomials. Under some standard assumptions, we establish the convergence property of this approach. Numerical results on some problems are given to describ...
The spline collocation method is employed to solve a system of linear and nonlinear Fredholm and Volterra integro-differential equations. The solutions are collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. We obtain the unique solution for linear and nonlinear system $(nN+3n)times(nN+3n)$ of integro-differential equations. This approximation reduces th...
In this paper, we develop a new cubic spline method for computing approximate solution of a system of fourth-order boundary value problems associated with obstacle, unilateral and contact problems. It is shown that the present method is of order two and gives approximations which are better than those produced by some other collocation, finite difference and spline methods. Numerical examples a...
A numerical method based on septic B-spline function is presented for the solution of linear and nonlinear fifth-order boundary value problems. The method is fourth order convergent. We use the quesilinearization technique to reduce the nonlinear problems to linear problems and use B-spline collocation method, which leads to a seven nonzero bands linear system. Illustrative example is included ...
The objective of this paper is to present a comparative study of fitted-mesh finite difference method, Ritz-Galerkin finite element method and B-spline collocation method for a two-parameter singularly perturbed boundary value problems. Due to the small parameters ε and μ, the boundary layers arise. We have taken a piecewise-uniform fittedmesh to resolve the boundary layers and shown that fitte...
Abstract: The aim of study is to solve parabolic integro-differential equation with a weakly singular kernel. Problems involving partial integro-differential equations arise in fluid dynamics, viscoelasticity, engineering, mathematical biology, financial mathematics and other areas. Many mathematical formulations of physical phenomena contain integro-differential equations. Integro-differential...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید