نتایج جستجو برای: strongly alpha reversible rings

تعداد نتایج: 511774  

Journal: :Journal of Pure and Applied Algebra 2003

Journal: :Journal of Pure and Applied Algebra 2002

Journal: :Bulletin of the Australian Mathematical Society 2006

Journal: :Journal of Pure and Applied Algebra 2019

2008
LINGLING FAN XIANDE YANG

A ring R is called strongly clean if every element of R is the sum of a unit and an idempotent that commute. By SRC factorization, Borooah, Diesl, and Dorsey [3] completely determined when Mn(R) over a commutative local ring R is strongly clean. We generalize the notion of SRC factorization to commutative rings, prove that commutative n-SRC rings (n ≥ 2) are precisely the commutative local ring...

Journal: :international journal of industrial mathematics 0
sh. a. safari ‎sabet‎ department of ‎mathematics,‎ central tehran branch, islamic azad university, tehran, ‎iran‎ m. farmani young researchers and elite club, roudehen branch, islamic azad university, roudehen, ‎iran

let $r$ be an associative ring with identity. an element $x in r$ is called $mathbb{z}g$-regular (resp. strongly $mathbb{z}g$-regular) if there exist $g in g$, $n in mathbb{z}$ and $r in r$ such that $x^{ng}=x^{ng}rx^{ng}$ (resp. $x^{ng}=x^{(n+1)g}$). a ring $r$ is called $mathbb{z}g$-regular (resp. strongly $mathbb{z}g$-regular) if every element of $r$ is $mathbb{z}g$-regular (resp. strongly $...

2006
E. Aljadeff Y. Ginosar

Let G be a finite group and R a strongly G-graded ring. The question of when R is semisimple (meaning in this paper semisimple artinian) has been studied by several authors. The most classical result is Maschke’s Theorem for group rings. For crossed products over fields there is a satisfactory answer given by Aljadeff and Robinson [3]. Another partial answer for skew group rings was given by Al...

M. Farmani, SH. A. Safari ‎Sabet‎

Let $R$ be an associative ring with identity. An element $x in R$ is called $mathbb{Z}G$-regular (resp. strongly $mathbb{Z}G$-regular) if there exist $g in G$, $n in mathbb{Z}$ and $r in R$ such that $x^{ng}=x^{ng}rx^{ng}$ (resp. $x^{ng}=x^{(n+1)g}$). A ring $R$ is called $mathbb{Z}G$-regular (resp. strongly $mathbb{Z}G$-regular) if every element of $R$ is $mathbb{Z}G$-regular (resp. strongly $...

Journal: :Journal of Algebra and Its Applications 2017

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید