نتایج جستجو برای: weak signed roman k domination number
تعداد نتایج: 1630879 فیلتر نتایج به سال:
A Roman dominating function on a graph G = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function is the value w(f) = ∑ v∈V f(v). The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman dominating function on ...
In this paper, we investigate domination number as well as signed domination numbers of Cay(G : S) for all cyclic group G of order n, where n in {p^m; pq} and S = { a^i : i in B(1; n)}. We also introduce some families of connected regular graphs gamma such that gamma_S(Gamma) in {2,3,4,5 }.
A Roman domination function on a graph G = (V,E) is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman domination function f is the value f(V (G)) = ∑ u∈V (G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G, denoted by...
A {em Roman dominating function} on a graph $G$ is a function $f:V(G)rightarrow {0,1,2}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. A {em total Roman dominating function} is a Roman dominating function with the additional property that the subgraph of $G$ induced by the set of all vertices of positive weight has n...
In this paper, we give upper bounds on the upper signed domination number of [l, k] graphs, which generalize some results obtained in other papers. Further, good lower bounds are established for the minus ksubdomination number γ−101 ks and signed k-subdomination number γ −11 ks .
A Roman dominating function of a graph G = (V,E) is a function f : V → {0, 1, 2} such that every vertex x with f(x) = 0 is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman dominating function is defined to be f(V ) = P x∈V f(x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we answer an open pro...
Let k ≥ 1 be an integer, and let D = (V, A) be a finite and simple digraph in which dD(v) ≥ k for all v ∈ V . A function f : V −→ {−1, 1} is called a signed total k-dominating function (STkDF) if f(N−(v)) ≥ k for each vertex v ∈ V . The weight w(f) of f is defined by w(f) = ∑ v∈V f(v). The signed total k-domination number for a digraph D is γ kS(D) = min{w(f) | f is a STkDF of D}. In this paper...
A Roman dominating function of a graph G = (V, E) is a function f : V → {0, 1, 2} such that every vertex x with f(x) = 0 is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman dominating function is defined to be f(V ) = P x∈V f(x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we answer an open pr...
We briefly review known results about the signed edge domination number of graphs. In the case of bipartite graphs, the signed edge domination number can be viewed in terms of its bi-adjacency matrix. This motivates the introduction of the signed domination number of a (0, 1)-matrix. We investigate the signed domination number for various classes of (0, 1)-matrices, in particular for regular an...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید