For every profinite group G, we construct two covariant functors ∆G and APG from the category of commutative rings with identity to itself, and show that indeed they are equivalent to the functor WG introduced in [A. Dress and C. Siebeneicher, The Burnside ring of profinite groups and the Witt vectors construction, Adv. Math. 70 (1988), 87-132]. We call ∆G the generalized Burnside-Grothendieck ...