نتایج جستجو برای: adaptive network based fuzzy inference system anfis

تعداد نتایج: 4987997  

2008
Lim Eng Aik O Jayakumar

The Fusion of Artificial Neural Networks (ANN) and Fuzzy Inference System (FIS) has attracted a growing interest of researchers in various scientific and engineering areas due to the growing need for adaptive intelligent systems to solve real world problems. ANN learns by adjusting the interconnections between layers. FIS is a popular computing framework based on the concept of fuzzy set theory...

2009
Yuanyuan Chai Limin Jia Zundong Zhang

Hybrid algorithm is the hot issue in Computational Intelligence (CI) study. From in-depth discussion on Simulation Mechanism Based (SMB) classification method and composite patterns, this paper presents the Mamdani model based Adaptive Neural Fuzzy Inference System (M-ANFIS) and weight updating formula in consideration with qualitative representation of inference consequent parts in fuzzy neura...

2009
Samad Ahadian Yoshiyuki Kawazoe

Modeling of water flow in carbon nanotubes is still a challenge for the classic models of fluid dynamics. In this investigation, an adaptive-network-based fuzzy inference system (ANFIS) is presented to solve this problem. The proposed ANFIS approach can construct an input-output mapping based on both human knowledge in the form of fuzzy if-then rules and stipulated input-output data pairs. Good...

2002

This chapter discusses the foundation of neuro-fuzzy systems. First, we introduce Takagi, Sugeno, and Kang (TSK) fuzzy model [l,2] and its difference from the Mamdani model. Under the idea of TSK fuzzy model, we discuss a neuro-fuzzy system architecture: Adaptive Network-based Fuzzy Inference System (ANFIS) that is developed by Jang [3]. This model allows the fuzzy systems to learn the paramete...

This paper employs Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict water level that leads to flood in coastal areas. ANFIS combines the verbal power of fuzzy logic and numerical power of neural network for its action. Meteorological and astronomical data of Santa Monica, a coastal area in California, U. S. A., were obtained. A portion of the data was used to train the ANFIS network, wh...

2008
N. Sarikaya K. Guney

A method based on adaptive neuro-fuzzy inference system (ANFIS) for computing the effective permittivity and the characteristic impedance of the micro-coplanar strip (MCS) line is presented. The ANFIS is a class of adaptive networks which are functionally equivalent to fuzzy inference systems (FISs). A hybrid learning algorithm, which combines the least square method and the backpropagation alg...

2014
Mohammed Algabri Hassan Mathkour Hedjar Ramdane

Navigation and obstacle avoidance in an unknown environment is proposed in this paper using hybrid neural network with fuzzy logic controller. The overall system is termed as Adaptive Neuro Fuzzy Inference System (ANFIS). ANFIS combines the benefits of fuzzy logic and neural networks for the purpose of achieving robotic navigation task. Simulation results are presented using Khepera Simulator (...

Maximum surface settlement (MSS) is an important parameter for the design and operation of earth pressure balance (EPB) shields that should determine before operate tunneling. Artificial intelligence (AI) methods are accepted as a technology that offers an alternative way to tackle highly complex problems that can’t be modeled in mathematics. They can learn from examples and they are able...

Journal: :journal of physical & theoretical chemistry 2015
jalal javadi moghaddam mostafa mirzaei masood madani mohammadreza norouzi atena khodarahmi

in this paper, an adaptive neuro fuzzy sliding mode based genetic algorithm (anfsga) controlsystem is proposed for a ph neutralization system. in ph reactors, determination and control of ph isa common problem concerning chemical-based industrial processes due to the non-linearity observedin the titration curve. an anfsga control system is designed to overcome the complexity of precisecontrol o...

2011
Himanshu Chaudhary Rajendra Prasad

In this paper, an Adaptive Neuro-Fuzzy Inference System (ANFIS) method based on the Artificial Neural Network (ANN) is applied to design an Inverse Kinematic based controller forthe inverse kinematical control of SCORBOT-ER V Plus. The proposed ANFIS controller combines the advantages of a fuzzy controller as well as the quick response and adaptability nature of an Artificial Neural Network (AN...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید