نتایج جستجو برای: amyloid fibrils

تعداد نتایج: 41968  

Journal: :Biomaterials 2011
Raffaella Paparcone Markus J Buehler

Amyloid fibrils and plaques are detected in the brain tissue of patients affected by Alzheimer's disease, but have also been found as part of normal physiological processes such as bacterial adhesion. Due to their highly organized structures, amyloid proteins have also been used for the development of nanomaterials, for a variety of applications including biomaterials for tissue engineering, na...

Journal: :The Journal of biological chemistry 2012
Estefania P C Azevedo Anderson B Guimarães-Costa Guilherme S Torezani Carolina A Braga Fernando L Palhano Jeffery W Kelly Elvira M Saraiva Debora Foguel

The accumulation of amyloid fibrils is a feature of amyloid diseases, where cell toxicity is due to soluble oligomeric species that precede fibril formation or are formed by fibril fragmentation, but the mechanism(s) of fragmentation is still unclear. Neutrophil-derived elastase and histones were found in amyloid deposits from patients with different systemic amyloidoses. Neutrophil extracellul...

2013
Yuhei Tokunaga Yukako Sakakibara Yoshiki Kamada Kei-ichi Watanabe Yasushi Sugimoto

Some of the lysozyme mutants in humans cause systemic amyloidosis. Hen egg white lysozyme (HEWL) has been well studied as a model protein of amyloid fibrils formation. We previously identified an amyloid core region consisting of nine amino acids (designated as the K peptide), which is present at 54-62 in HEWL. The K peptide, with tryptophan at its C- terminus, has the ability of self-aggregati...

2015
Tadakazu Okoshi Itaru Yamaguchi Daisaku Ozawa Kazuhiro Hasegawa Hironobu Naiki

Dialysis-related amyloidosis is a major complication in long-term hemodialysis patients. In dialysis-related amyloidosis, β2-microglobulin (β2-m) amyloid fibrils deposit in the osteoarticular tissue, leading to carpal tunnel syndrome and destructive arthropathy with cystic bone lesions, but the mechanism by which these amyloid fibrils destruct bone and joint tissue is not fully understood. In t...

2015
Laura M. Castellano Rebecca M. Hammond Veronica M. Holmes

Semen harbors amyloid fibrils formed by proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) that potently enhance HIV infectivity. Amyloid but not soluble forms of these peptides enhance HIV infection. Thus, agents that remodel these amyloid fibrils could prevent HIV transmission. Here, we confirm that the green tea polyphenol, epigall...

Journal: :Neuron 2015
Robert Tycko

Our understanding of the molecular structures of amyloid fibrils that are associated with neurodegenerative diseases, of mechanisms by which disease-associated peptides and proteins aggregate into fibrils, and of structural properties of aggregation intermediates has advanced considerably in recent years. Detailed molecular structural models for certain fibrils and aggregation intermediates are...

Journal: :PLoS ONE 2008
Abhay Kumar Thakur Ch Mohan Rao

Amyloid fibril formation involves three steps; structural perturbation, nucleation and elongation. We have investigated amyloidogenesis using prion protein as a model system and UV-light as a structural perturbant. We find that UV-exposed prion protein fails to form amyloid fibrils. Interestingly, if provided with pre-formed fibrils as seeds, UV-exposed prion protein formed amyloid fibrils albe...

2000
John J. Balbach Yoshitaka Ishii Oleg N. Antzutkin Richard D. Leapman Nancy W. Rizzo Fred Dyda Jennifer Reed Robert Tycko

The seven-residue peptide N-acetyl-Lys-Leu-Val-Phe-Phe-Ala-Glu-NH2, called Aβ16-22 and representing residues 16 through 22 of the full-length β-amyloid peptide associated with Alzheimer’s disease, is shown by electron microscopy to form highly ordered fibrils upon incubation of aqueous solutions. X-ray powder diffraction and optical birefringence measurements confirm that these are amyloid fibr...

2011
Xiang Yu Jie Zheng

BACKGROUND Misfolding and self-assembly of Amyloid-β (Aβ) peptides into amyloid fibrils is pathologically linked to the development of Alzheimer's disease. Polymorphic Aβ structures derived from monomers to intermediate oligomers, protofilaments, and mature fibrils have been often observed in solution. Some aggregates are on-pathway species to amyloid fibrils, while the others are off-pathway s...

2016
Weronika Surmacz-Chwedoruk Viktoria Babenko Robert Dec Piotr Szymczak Wojciech Dzwolak

Typically, elongation of an amyloid fibril entails passing conformational details of the mother seed to daughter generations of fibrils with high fidelity. There are, however, several factors that can potentially prevent such transgenerational structural imprinting from perpetuating, for example heterogeneity of mother seeds or so-called conformational switching. Here, we examine phenotypic per...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید