In this note we use the Nehari manifold and fibering maps to show existence of positive solutions for a nonlinear biharmonic equation in a bounded smooth domain in Rn, when n = 5, 6, 7. Mathematics Subject Classification: 35J35, 35J40
where τ( f ) is the tension field of f and dvg is the volume form of M. It is clear that E2( f |Ω) = 0 on any compact domain if and only if f is a harmonic map. Thus E2 provides a measure for the extent to which f fails to be harmonic. If f is a critical point of (1.1) over every compact domain, then f is called a biharmonic map or 2-harmonic maps. Jiang [10] proved that f is biharmonic if and ...