نتایج جستجو برای: boussinesq equation
تعداد نتایج: 231267 فیلتر نتایج به سال:
We rigorously establish that, in the long-wave regime characterized by the assumptions of long wavelength and small amplitude, bidirectional solutions of the improved Boussinesq equation tend to associated solutions of two uncoupled Camassa-Holm equations. We give a precise estimate for approximation errors in terms of two small positive parameters measuring the effects of nonlinearity and disp...
In this paper we further improve the modified extended tanh-function method to obtain new exact solutions for nonlinear partial differential equations. Numerical applications of the proposed method are verified by solving the improved Boussinesq equation and the system of variant Boussinesq equations. The new exact solutions for these equations include Jacobi elliptic doubly periodic type, Weie...
In this article, we derive a viscous Boussinesq system for surface water waves from Navier-Stokes equations. So, we use neither the irrotationality assumption, nor the Zakharov-Craig-Sulem formulation. During the derivation, we find the bottom shear stress, and also the decay rate for shallow (and not deep) water. In order to justify our derivation, we check it by deriving the viscous Korteweg-...
Studied is the Baxter equation for the quantum discrete Boussinesq equation. We explicitly construct the Baxter Q operator from a generating function of the local integrals of motion of the affine Toda lattice field theory, and show that it solves the third order operator-valued difference equation. nlin/0102021
[1] The method of recession analysis proposed by Brutsaert and Nieber (1977) remains one of the few analytical tools for estimating aquifer hydraulic parameters at the field scale and beyond. In the method, the recession hydrograph is examined as dQ/dt = f(Q), where Q is aquifer discharge and f is an arbitrary function. The observed function f is parameterized through analytical solutions to th...
Exact solutions of the dispersive water wave and modified Boussinesq equations are expressed in terms of special polynomials associated with rational solutions of the fourth Painlevé equation, which arises as generalized scaling reductions of these equations. Generalized solutions that involve an infinite sequence of arbitrary constants are also derived which are analogues of generalized ration...
The accurate numerical simulation of wave disturbance within harbours requires consideration of both nonlinear and dispersive wave processes in order to capture such physical effects as wave refraction and diffraction, and nonlinear wave interactions such as the generation of harmonic waves. The Boussinesq equations are the simplest class of mathematical model that contain all these effects in ...
We apply the Lie-group formalism and the nonclassical method due to Bluman and Cole to deduce symmetries of the generalized Boussinesq equation, which has the classical Boussinesq equation as an special case. We study the class of functions f(u) for which this equation admit either the classical or the nonclassical method. The reductions obtained are derived. Some new exact solutions can be der...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید