نتایج جستجو برای: cherednik opdam operator
تعداد نتایج: 94573 فیلتر نتایج به سال:
The algebraic structure and the relationships between the eigenspaces of the Calogero-Sutherland model (CSM) and the Sutherland model (SM) on a circle are investigated through the Cherednik operators. We find an exact connection between the simultaneous non-symmetric eigenfunctions of the AN−1 Cherednik operators, from which the eigenfunctions of the CSM and SM are constructed, and the monomial...
1.1. Shan has proved that the categories Oc(Wn) for rational Cherednik algebras of type Wn = W (G(`, 1, n)) = Snn(μ`) with n varying, together with decompositions of the parabolic induction and restriction functors of Bezrukavnikov-Etingof, provide a categorification of an integrable s̃le Fock space representation F(m), [18]. The parameters m ∈ Z` and e ∈ N ∪ {∞} arise from the choice of paramet...
We consider compact Grassmann manifolds G/K over the real, complex or quaternionic numbers whose spherical functions are Heckman–Opdam polynomials of type BC. From an explicit integral representation of these polynomials we deduce a sharp Mehler–Heine formula, that is an approximation of the Heckman–Opdam polynomials in terms of Bessel functions, with a precise estimate on the error term. This ...
Citation Etingof, Pavel. "A uniform proof of the Macdonald-Mehta-Opdam identity for finite Coxeter groups. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
is completely integrable and hence L(k) is in a commuting system of differential operators with n algebraically independent operators. Then we have the following fundamental result (cf. [1]). Theorem [Heckman, Opdam]. When kα are generic, the function F (λ, k;x) has an analytic extension on R and defines a unique simultaneous eigenfunction of the commuting system of differential operators with ...
In this note we give a proof of Cherednik’s generalization of Macdonald–Mehta identities for the root system An−1, using representation theory of quantum groups. These identities give an explicit formula for the integral of a product of Macdonald polynomials with respect to a “difference analogue of the Gaussian measure”. They were suggested by Cherednik, who also gave a proof based on represen...
We introduce a class of hyperplane arrangements $$\mathcal {A}$$ in $${\mathbb {C}}^n$$ that generalise the locus configurations Chalykh, Feigin and Veselov. To such an arrangement we associate second order partial differential operator Calogero–Moser type prove this is completely integrable (in sense its centraliser {D}({\mathbb {C}}^n\!\setminus \!\mathcal {A})$$ contains maximal commutative ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید