نتایج جستجو برای: completely prime submodule
تعداد نتایج: 189023 فیلتر نتایج به سال:
Let l be a prime, and let Γ be a finite subgroup of GLn(Fl) = GL(V ). With these assumptions we say that Condition (C) holds if for every irreducible Γ-submodule W ⊂ ad V there exists an element g ∈ Γ with an eigenvalue α such that tr eg,αW 6= 0. Here, eg,α denotes the projection to the generalised α-eigenspace of g. This condition arises in the definition of adequacy in section 2. Let Γ denote...
Let l be a prime, and let Γ be a finite subgroup of GLn(Fl) = GL(V ). With these assumptions we say that Condition (C) holds if for every irreducible Γ-submodule W ⊂ ad V there exists an element g ∈ Γ with an eigenvalue α such that tr eg,αW 6= 0. Here, eg,α denotes the projection to the generalised α-eigenspace of g. This condition arises in the definition of adequacy in section 2. Let Γ denote...
BRST-resolution is studied for the principally graded Wakimoto module of ŝl2 recently found in [9]. The submodule structure is completely determined and irreducible representations can be obtained as the zero-th cohomology group. e-mail:[email protected]
Let G be a group with identity e. R G-graded commutative ring and M graded R-module. We introduce the concept of Ie-prime submodule as generalization prime for I =?g?G Ig fixed ideal R. give number results concerning this class submodules their homogeneous components. A proper N is said to if whenever rg ? h(R) mh h(M) rgmh IeN, then either (N :R M) or N.
Let R be a ring and let I 6= R be an ideal of R. Then I is said to be a completely prime ideal of R if R/I is a domain and is said to be completely semiprime if R/I is a reduced ring. In this paper, we introduce a new class of rings known as completely prime ideal rings. We say that a ring R is a completely prime ideal ring (CPI-ring) if every prime ideal of R is completely prime. We say that a...
A tag module is a generalization, in any abelian category, of a torsion abelian group. The theory of such modules is developed, it is shown that countably generated tag modules are simply presented, and that Ulm's theorem holds for simply presented tag modules. Zippin's theorem is stated and proved for countably generated tag modules. 1. TAG-modules In the theory of torsion abelian groups, a di...
let $r$ be a commutative ring with identity and $m$ be a unitary$r$-module. the primary-like spectrum $spec_l(m)$ is thecollection of all primary-like submodules $q$ such that $m/q$ is aprimeful $r$-module. here, $m$ is defined to be rsp if $rad(q)$ isa prime submodule for all $qin spec_l(m)$. this class containsthe family of multiplication modules properly. the purpose of thispaper is to intro...
Let R be a commutative ring with nonzero identity and M an R-module. In this paper, first we give some relations between S-prime S-maximal submodules that are generalizations of prime maximal submodules, respectively. Then construct topology on the set all , which is generalization spectrum M. We investigate when SpecS(M) T0 T1-space. also study continuous maps irreducibility SpecS(M). Moreover...
If N is a submodule of the R-module M , and a ∈ R, let λa : M/N → M/N be multiplication by a. We say that N is a primary submodule of M if N is proper and for every a, λa is either injective or nilpotent. Injectivity means that for all x ∈ M , we have ax ∈ N ⇒ x ∈ N . Nilpotence means that for some positive integer n, aM ⊆ N , that is, a belongs to the annihilator of M/N , denoted by ann(M/N). ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید