نتایج جستجو برای: cramer d w

تعداد نتایج: 739961  

Journal: :Nature 1979

2013
Yashwanth R. Padooru Alexander B. Yakovlev Chandra S. R. Kaipa George W. Hanson Francisco Medina Francisco Mesa

Yashwanth R. Padooru,1 Alexander B. Yakovlev,1 Chandra S. R. Kaipa,1,* George W. Hanson,2 Francisco Medina,3 and Francisco Mesa4 1Center for Applied Electromagnetic Systems Research (CAESR), Department of Electrical Engineering, University of Mississippi, University, Mississippi 38677-1848, USA 2Department of Electrical Engineering, University of Wisconsin–Milwaukee, 3200 N. Cramer St., Milwauk...

Journal: :Nature 1960

Journal: :Cerebrovascular diseases 2004
Jean-Claude Baron Leonardo G Cohen Steven C Cramer Bruce H Dobkin Heidi Johansen-Berg Isabelle Loubinoux Randolph S Marshall N S Ward

Accessible online at: www.karger.com/ced This conference was made possible by the Charles and Jean Brunie Foundation and The Richard and Jenny Levine Foundation. Workshop Participants: (Writing Committee Indicated by Asterisks) Baron, Jean-Claude* Black, Sandra E. Butler, Andrew J. Carey, James Chollet, Francois Cohen, Leonardo G.* Corbetta, Maurizio Cramer, Steven C.* Dobkin, Bruce H.* Frackow...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1391

بعد متریک گراف ها فرض کنید ‎$g$‎ یک گراف همبند و ‎$w={w_1,w_2,ldots,w_ k}$‎ زیرمجموعه ای مرتب از ‎$v(g)$‎ باشد. برای هر رأس دلخواه ‎$v$‎ از ‎$g$‎ ‎{fgi{g:mrep}}‎ رأس ‎$v$‎ نسبت به ‎$w$‎ عبارت است از بردار ‎$k$-‎تایی ‎vspace*{4mm}‎ ‎$$r(v|w):=(d(v,w_1),d(v,w_2),ldots,d(v,w_k)).$$‎ اگر کدهای متریک رأس های متمایز ‎$g$‎ نسبت به ‎$w$‎ از هم متمایز باشند، ‎$w$‎ یک مجموعه کاشف برای ‎$g$‎ نامیده...

A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....

2006
Steven Kay Cuichun Xu

The Cramer-Rao Lower Bound is widely used in statistical signal processing as a benchmark to evaluate unbiased estimators. However, for some random variables, the probability density function has no closed analytical form. Therefore, it is very hard or impossible to evaluate the Cramer-Rao Lower Bound directly. In these cases the characteristic function may still have a closed and even simple f...

Journal: :Respiratory Medicine 2006

2003
D. Arkhipkin G. S. Averichev S. K. Badyal J. Balewski O. Barannikova L. S. Barnby J. Baudot S. Bekele V. V. Belaga R. Bellwied J. Berger B. I. Bezverkhny S. Bhardwaj P. Bhaskar A. K. Bhati H. Bichsel A. Billmeier L. C. Bland C. O. Blyth B. E. Bonner M. Botje A. Boucham A. Brandin A. Bravar R. V. Cadman X. Z. Cai H. Caines A. Cardenas J. Carroll J. Castillo M. Castro D. Cebra P. Chaloupka S. Chattopadhyay H. F. Chen Y. Chen S. P. Chernenko M. Cherney A. Chikanian B. Choi W. Christie J. P. Coffin T. M. Cormier J. G. Cramer H. J. Crawford D. Das S. Das A. A. Derevschikov L. Didenko T. Dietel X. Dong J. E. Draper F. Du A. K. Dubey V. B. Dunin J. C. Dunlop M. R. Dutta Majumdar T. J. Hallman D. Hardtke J. W. Harris G. W. Hoffmann M. Horsley H. Z. Huang S. L. Huang T. J. Humanic G. Igo A. Ishihara P. Jacobs W. W. Jacobs M. Janik I. Johnson P. G. Jones E. G. Judd S. Kabana M. Kaneta S. Mahajan L. K. Mangotra D. P. Mahapatra R. Majka

J. Adams, C. Adler, M. M. Aggarwal, Z. Ahammed, J. Amonett, B. D. Anderson, M. Anderson, D. Arkhipkin, G. S. Averichev, S. K. Badyal, J. Balewski, O. Barannikova, L. S. Barnby, J. Baudot, S. Bekele, V. V. Belaga, R. Bellwied, J. Berger, B. I. Bezverkhny, S. Bhardwaj, P. Bhaskar, A. K. Bhati, H. Bichsel, A. Billmeier, L. C. Bland, C. O. Blyth, B. E. Bonner, M. Botje, A. Boucham, A. Brandin, A. B...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید