نتایج جستجو برای: divisor graph
تعداد نتایج: 201076 فیلتر نتایج به سال:
For a commutative semigroup S with 0, the zero-divisor graph of S denoted by Γ(S) is the graph whose vertices are nonzero zero-divisor of S, and two vertices x, y are adjacent in case xy = 0 in S. In this paper we study median and center of this graph. Also we show that if Ass(S) has more than two elements, then the girth of Γ(S) is three.
We recall several results of zero divisor graphs of commutative rings. We then examine the preservation of the diameter of the zero divisor graph of polynomial and power series rings.
In this paper we study zero-divisor graphs of semirings. We show that all zero-divisor graphs of (possibly noncommutative) semirings are connected and have diameter less than or equal to 3. We characterize all acyclic zero-divisor graphs of semirings and prove that in the case zero-divisor graphs are cyclic, their girths are less than or equal to 4. We also give a description of the zero-diviso...
In this paper we give a characterization for all commutative rings with $1$ whose zero-divisor graphs are $C_4$-free.
Let R be a commutative ring with non-zero identity. The cozero-divisor graph of R, denoted by , is a graph with vertices in R W R , which is the set of all non-zero and non-unit elements of R, and two distinct vertices a and b in are adjacent if and only if and W R a bR b aR . In this paper, we investigate some combinatorial properties of the cozero-divisor graphs ...
Let $G$ be a finite group and $cd^*(G)$ be the set of nonlinear irreducible character degrees of $G$. Suppose that $rho(G)$ denotes the set of primes dividing some element of $cd^*(G)$. The bipartite divisor graph for the set of character degrees which is denoted by $B(G)$, is a bipartite graph whose vertices are the disjoint union of $rho(G)$ and $cd^*(G)$, and a vertex $p in rho(G)$ is conne...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید