نتایج جستجو برای: edge pair sum labeling
تعداد نتایج: 356673 فیلتر نتایج به سال:
An antimagic labeling of a graph G with m edges is a bijection from E(G) to {1, 2, . . . ,m} such that for all vertices u and v, the sum of labels on edges incident to u differs from that for edges incident to v. Hartsfield and Ringel conjectured that every connected graph other than the single edge K2 has an antimagic labeling. We prove this conjecture for regular graphs of odd degree.
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
An edge labeling of a graph G = (V,E) is a bijection from the set of edges to the set of integers {1, 2, . . . , |E|}. The weight of a vertex v is the sum of the labels of all the edges incident with v. If the vertex weights are all distinct then we say that the labeling is vertex-antimagic, or simply, antimagic. A graph that admits an antimagic labeling is called an antimagic graph. In this pa...
A vertex-distinguishing coloring of a graph G consists in an edge or a vertex coloring (not necessarily proper) of G leading to a labeling of the vertices of G, where all the vertices are distinguished by their labels. There are several possible rules for both the coloring and the labeling. For instance, in a set irregular edge coloring [5], the label of a vertex is the union of the colors of i...
As a standard notation, assume that G = G(V,E) is a finite, simple and undirected graph with p vertices and q edges. A labeling of a graph is any mapping that sends some set of graph elements to a set of numbers (usually positive integers). If the domain is the vertex-set or the edge-set, the labelings are called respectively vertex-labelings or edge-labelings. If the domain is V ∪E then we cal...
A graph G is k–weighted–list–antimagic if for any vertex weighting ω : V (G) → R and any list assignment L : E(G)→ 2R with |L(e)| ≥ |E(G)|+k there exists an edge labeling f such that f(e) ∈ L(e) for all e ∈ E(G), labels of edges are pairwise distinct, and the sum of the labels on edges incident to a vertex plus the weight of that vertex is distinct from the sum at every other vertex. In this pa...
A labeling of a graph is a bijective function onto its edges from the set {1, 2, . . . , |E(G)|}. A labeling is antimagic if for every pair of distinct vertices u and v, the sum of the labels on edges incident to u is different from the sum of the labels on edges incident to v. We say a graph is antimagic if it has an antimagic labeling. In 1990, Ringel conjectured that every connected graph ot...
Let Z2 = {0, 1} and G = (V ,E) be a graph. A labeling f : V → Z2 induces an edge labeling f* : E →Z2 defined by f*(uv) = f(u).f (v). For i ε Z2 let vf (i) = v(i) = card{v ε V : f(v) = i} and ef (i) = e(i) = {e ε E : f*(e) = i}. A labeling f is said to be Vertex-friendly if | v(0) − v(1) |≤ 1. The vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. In this paper ...
A sum graph is a finite simple whose vertex set labeled with distinct positive integers such that two vertices are adjacent if and only the of their labels itself another label. The spum $G$ minimum difference between largest smallest in consisting number additional isolated necessary so labeling exists. We investigate various families graphs, namely cycles, paths, matchings. introduce sum-diam...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید