نتایج جستجو برای: edge wiener index
تعداد نتایج: 511127 فیلتر نتایج به سال:
the wiener index is a graph invariant that has found extensive application in chemistry. inaddition to that a generating function, which was called the wiener polynomial, who’sderivate is a q-analog of the wiener index was defined. in an article, sagan, yeh and zhang in[the wiener polynomial of a graph, int. j. quantun chem., 60 (1996), 959969] attainedwhat graph operations do to the wiener po...
Formulas for the Wiener number and the Hosoya-Wiener polynomial of edge and vertex weighted graphs are given in terms of edge and path contributions. For a rooted tree, the Hosoya-Wiener polynomial is expressed as a sum of vertex contributions. Finally, a recursive formula for computing the Hosoya-Wiener polynomial of a weighted tree is given.
in theoretical chemistry, molecular structure descriptors are used to compute properties of chemical compounds. among them wiener, szeged and detour indices play significant roles in anticipating chemical phenomena. in the present paper, we study these topological indices with respect to their difference number.
Let G be a graph with vertex set V(G) and edge set E(G). For any two vertices x and y in V(G), the distance between x and y, denoted by d(x,y), is the length of the shortest path connecting x and y. The degree of a vertex v in G is the number of neighbors of v in G. Numbers reflecting certain structural features of organic molecules that are obtained from the molecular graph are usually called ...
Let G be a connected graph and ξ(G) = Sze(G)−We(G), where We(G) denotes the edge Wiener index and Sze(G) denotes the edge Szeged index of G. In an earlier paper, it is proved that if T is a tree then Sze(T ) = We(T ). In this paper, we continue our work to prove that for every connected graph G, Sze(G) ≥ We(G) with equality if and only if G is a tree. We also classify all graphs with ξ(G) ≤ 5. ...
One of the generalizations of the Wiener number to weighted graphs is to assign probabilities to edges, meaning that in nonstatic conditions the edge is present only with some probability. The Reliability Wiener number is defined as the sum of reliabilities among pairs of vertices, where the reliability of a pair is the reliability of the most reliable path. Closed expressions are derived for t...
fullerenes are closed−cage carbon molecules formed by 12 pentagonal and n/2 – 10hexagonal faces, where n is the number of carbon atoms. patrick fowler in his lecture inmcc 2009 asked about the wiener index of fullerenes in general. in this paper werespond partially to this question for an infinite class of fullerenes with exactly 10ncarbon atoms. our method is general and can be applied to full...
Let $G$ and $H$ be graphs. The tensor product $Gotimes H$ of $G$ and $H$ has vertex set $V(Gotimes H)=V(G)times V(H)$ and edge set $E(Gotimes H)={(a,b)(c,d)| acin E(G):: and:: bdin E(H)}$. In this paper, some results on this product are obtained by which it is possible to compute the Wiener and Hyper Wiener indices of $K_n otimes G$.
In this paper the Wiener and hyper Wiener index of two kinds of dendrimer graphs are determined. Using the Wiener index formula, the Szeged, Schultz, PI and Gutman indices of these graphs are also determined.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید