نتایج جستجو برای: filiform nilpotent lie algebra
تعداد نتایج: 111715 فیلتر نتایج به سال:
Let K be a field of positive characteristic p and KG the group algebra of a group G. It is known that, if KG is Lie nilpotent, then its upper (or lower) Lie nilpotency index is at most |G| + 1, where |G| is the order of the commutator subgroup. Previously we determined the groups G for which the upper/lower nilpotency index is maximal or the upper nilpotency index is ‘almost maximal’ (that is, ...
It was shown in papers of Dosi and a recent article the author that there is sheaf Frechet-Arens-Michael algebras (locally solvable complex case polynomial growth real) on character space nilpotent Lie algebra. For algebra group affine transformations line (the simplest non-nilpotent algebra) we construct analogous sheaves non-commutative smooth holomorphic functions special set representations.
Let K be a field of positive characteristic p and KG the group algebra of a group G. It is known that, if KG is Lie nilpotent, then its upper (or lower) Lie nilpotency index is at most |G|+ 1, where |G| is the order of the commutator subgroup. The authors have previously determined the groups G for which this index is maximal and here they determine the G for which it is ‘almost maximal’, that ...
We give a new characterization of Lusztig’s canonical quotient, a finite group attached to each special nilpotent orbit of a complex semisimple Lie algebra. This group plays an important role in the classification of unipotent representations of finite groups of Lie type. We also define a duality map. To each pair of a nilpotent orbit and a conjugacy class in its fundamental group, the map assi...
Let X be an F -rational nilpotent element in the Lie algebra of a connected and reductive group G defined over the ground field F . Suppose that the Lie algebra has a non-degenerate invariant bilinear form. We show that the unipotent radical of the centralizer of X is F -split. This property has several consequences. When F is complete with respect to a discrete valuation with either finite or ...
We consider two different constructions of higher brackets. First, based on a Grassmann-odd, nilpotent ∆ operator, we define a non-commutative generalization of the higher Koszul brackets, which are used in a generalized Batalin-Vilkovisky algebra, and we show that they form a homotopy Lie algebra. Secondly, we investigate higher, so-called derived brackets built from symmetrized, nested Lie br...
In this paper we explicitly determine the derivation algebra, automorphism group of quasi Qn-filiform Lie algebras, and applying some properties of root vector decomposition we obtain their isomorphism theorem. AMS Classification: 17B05; 17B30
We consider two different constructions of higher brackets. First, based on a Grassmann-odd, nilpotent ∆ operator, we define a non-commutative generalization of the higher Koszul brackets, which are used in a generalized Batalin-Vilkovisky algebra, and we show that they form a homotopy Lie algebra. Secondly, we investigate higher, so-called derived brackets built from symmetrized, nested Lie br...
We give the number of nilpotent orbits in the Lie algebras of orthogonal groups under the adjoint action of the groups over F(2(n)). Let G be an adjoint algebraic group of type B, C, or D defined over an algebraically closed field of characteristic 2. We construct the Springer correspondence for the nilpotent variety in the Lie algebra of G.
In this paper we study the automorphism group of solvable complete Lie algebra whose nilpotent radical is a quasi Heisenberg algebra. AMS Classification: 17B05; 17B30
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید