نتایج جستجو برای: flame structure

تعداد نتایج: 1582058  

2017
V. Di Sarli A. Di Benedetto G. Russo S. Jarvis E. J. Long G. K. Hargrave Valeria Di Sarli

In gas explosions, the unsteady coupling of the propagating flame and the flow field induced by the presence of blockages along the flame path produces vortices of different scales ahead of the flame front. The resulting flame/vortex interaction intensifies the rate of flame propagation and the pressure rise. In this paper, a joint numerical and experimental study of unsteady premixed flame pro...

2013
D. L. Wisman S. D. Marcum B. N. Ganguly

This work focuses upon the effects of DC electric fields on the stability of downward propagating atmospheric pressure premixed propane–air flames under experimental conditions that provide close coupling of the electric field to the flame. With the appropriate electrode geometry, modest applied voltages are shown to drive a stable conical flame first into a wrinkled-laminar flamelet geometry, ...

2016
Wei-Chieh Hu Shanti Kartika Sari Shuhn-Shyurng Hou Ta-Hui Lin

In this study, methane-ethylene jet diffusion flames modulated by acoustic excitation in an atmospheric environment were used to investigate the effects of acoustic excitation frequency and mixed fuel on nanomaterial formation. Acoustic output power was maintained at a constant value of 10 W, while the acoustic excitation frequency was varied (f = 0-90 Hz). The results show that the flame could...

2005
John B. Bell Marcus S. Day Joseph F. Grcar Michael J. Lijewski James F. Driscoll Sergei A. Filatyev

We present three-dimensional, time-dependent simulations of the flowfield of a laboratory-scale slot burner. The simulations are performed using an adaptive time-dependent low Mach number combustion algorithm based on a second-order projection formulation that conserves both species mass and total enthalpy. The methodology incorporates detailed chemical kinetics and a mixture model for differen...

2005
Andrey V. Zhiglo

Various flame tracking techniques are often used in hydrodynamic simulations. Their use is indispensable when resolving actual scale of the flame is impossible. We show that parameters defining “artificial flame” propagation found from model systems may yield flame velocities several times distinct from the required ones, due to matter expansion being ignored in the models. Integral effect of m...

1999
EDWARD L. DREIZIN VERN K. HOFFMANN

The combustion mechanisms of clouds of metal particles are addressed in this research. A microgravity environment was used to create a “stationary model aerosol” consisting of relatively large (100–300 mm diameter), initially motionless particles. The development of individual particle flames, motion of individual particles, and overall aerosol combustion process could be observed simultaneousl...

2016
Chao Li Xiaomin Wu Juncai Hou Thomas E. Amidon

This paper compares numerical simulations with experiments to study the deformation of lean premixed spherically expanding flames under a negative direct current (DC) electric field. The experiments, including the flame deformation and the ionic distribution on the flame surface were investigated in a mesh to mesh electric field. Besides, a numerical model of adding an electric body force to th...

2016
A. J. Aspden

Three-dimensional direct numerical simulation of lean premixed hydrogen flames is used to explore the influence of species and thermal diffusion and viscosity on the flame structure and turbulent flame response. The leadingorder flame response is shown to be due to the global Lewis number with little influence from the other species. The previously-reported observation of decorrelation of fuel ...

Due to the increasing need for a more realistic analysis of flame, in this study, the premixed counter flow flames propagation in the uniform mixture of organic porous particles and air is studied. Because of size equality assumption of the porous particles, lycopodium particles at this research are assumed. This analysis framework is thermal-diffusion model with this assumption that the lewis...

2005
Alejandro Briones Ishwar K. Puri Suresh K. Aggarwal

A computational investigation of high-pressure hydrogen–air partially premixed flames (PPFs) is reported to characterize the effect of pressure on the flame structure, and the relevance of reaction limits for these flames. The flames are computed using the Mueller mechanism consisting of 19 elementary reactions and 9 species. Although the mechanism has been validated during previous investigati...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید