Let K be a field, K[X] = K[X1, . . . , Xn] the polynomial ring in n variables over K for some n ∈ N, and K(X) the field of fractions of K[X]. Assume that L is a subfield of K(X) containing K. Then, the Fourteenth Problem of Hilbert asks whether the Ksubalgebra L ∩K[X] of K[X] is finitely generated. Zariski [17] showed in 1954 that the answer to this problem is affirmative if the transcendence d...