نتایج جستجو برای: fredholm volterra integro differential equations
تعداد نتایج: 469599 فیلتر نتایج به سال:
The Tau method, produces approximate polynomial solution of differential, integral and integro-differential equations (see [E.l,Ortiz, The Tau method, SIAM J. Numer. Anal. 6 (3) (1969) 480–492; E.l. Ortiz, H. Samara, An operational approach to the Tau method for the numerical solution of non-linear differential equations, Computing 27 (1981) 15–25; S.M. Hosseini, S. Shahmorad, A matrix formulat...
In this research, the finite difference method is used to solve initial value problem of linear first order Volterra-Fredholm integro-differential equations with singularity. By using implicit rules and composite numerical quadrature rules, scheme established on a Shishkin mesh. The stability convergence proposed are analyzed two examples solved display advantages presented technique.
A collocation procedure is developed for the linear and nonlinear Fredholm and Volterraintegro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solutionis collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula.The error analysis of proposed numerical method is studied theoretically. Numerical results are given toil...
in this paper, a numerical solution for a system of linear fredholm integro-differential equations by means of the sinc method is considered. this approximation reduces the system of integro-differential equations to an explicit system of algebraic equations. the exponential convergence rate $o(e^{-k sqrt{n}})$ of the method is proved. the analytical results are illustrated with numerical examp...
In this paper, a numerical solution for a system of linear Fredholm integro-differential equations by means of the sinc method is considered. This approximation reduces the system of integro-differential equations to an explicit system of algebraic equations. The exponential convergence rate $O(e^{-k sqrt{N}})$ of the method is proved. The analytical results are illustrated with numerical examp...
In this paper, Semi-orthogonal (SO) B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of linear and non-linear second order Fredholm integro-differential equations. The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this functions are presented to reduce the solution of linear and...
The scope of this study is to establish an effective approximation method for linear first order singularly perturbed Volterra-Fredholm integro-differential equations. finite difference scheme constructed on Shishkin mesh by using appropriate interpolating quadrature rules and exponential basis function. recommended second convergent in the discrete maximum norm. Numerical results illustrating ...
In this paper, an effective direct method to determine the numerical solution of linear and nonlinear Fredholm and Volterra integral and integro-differential equations is proposed. The method is based on expanding the required approximate solution as the elements of Chebyshev cardinal functions. The operational matrices for the integration and product of the Chebyshev cardinal functions are des...
A collocation procedure is developed for the linear and nonlinear Fredholm and Volterra integro-differential equations, using the globally defined B-spline and auxiliary basis functions.The solution is collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically. Numerical results are given t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید