نتایج جستجو برای: fuzzy neural networks
تعداد نتایج: 714687 فیلتر نتایج به سال:
This paper presents a fuzzy system that recognizes learning styles and emotions using two different neural networks. The first neural network (a Kohonen neural network) recognizes the student cognitive style. The second neural network (a back-propagation neural network) was used to recognize the student emotion. Both neural networks are being part of a fuzzy system used into an intelligent tuto...
In this paper, we propose the genetic design of fuzzy neural networks with multi-output based on interval type-2 fuzzy set (IT2FSFNNm) for pattern recognition. IT2FSFNNm is the networks of combination between the fuzzy neural networks (FNNs) and interval type-2 fuzzy set with uncertainty. The premise part of the networks is composed of the fuzzy partition of respective input spaces and the cons...
Background and Aim: Bacterial meningitis detection is a complicated problem because of having several components in order to be diagnosed and distinguished from other types of meningitis. Fuzzy logic and neural network, frequently used in expert systems, are able to distinguish such diseases. The purpose of this paper is to compare Fuzzy logic and artificial neural networks for distinguishing b...
This paper discusses the generalization capability of neural networks based on various fuzzy operators introduced earlier by the authors as Fuzzy Flip-Flop based Neural Networks (FNNs), in comparison with standard (e.g. tansig function based, MATLAB Neural Network Toolbox type) networks in the frame of simple function approximation problems. Various fuzzy neurons, one of them based on a pair of...
As we all know, the parameter optimization of Mamdani model has a defect of easily falling into local optimum. To solve this problem, we propose a new algorithm by constructing Mamdani Fuzzy neural networks. This new scheme uses fuzzy clustering based on particle swarm optimization (PSO) algorithm to determine initial parameter of Mamdani Fuzzy neural networks. Then it adopts PSO algorithm to o...
This paper proposes a novel clustering algorithm for the structure learning of fuzzy neural networks. Our clustering algorithm uses the reward and penalty mechanism for the adaptation of the fuzzy neural networks prototypes at every training sample. Compared with the classical clustering algorithms, the new algorithm can on-line partition the input data, pointwise update the clusters, and self-...
The paper describes an application of evolvable fuzzy neural networks for artificial creativity in linguistics. The task of the creation of an English vocabulary was resolved with neural networks which have an evolvable architecture with learning capabilities as well as a fuzzy connectionist structure. The paper features a form of artificial creativity which creates words on its own using genet...
The author proposes an extension of genetic algorithm (GA) for solving fuzzy-valued optimization problems. In the proposed GA, values in the genotypes are not real numbers but fuzzy numbers. Evolutionary processes in GA are extended so that GA can handle genotype instances with fuzzy numbers. The proposed method is applied to evolving neural networks with fuzzy weights and biases. Experimental ...
Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید