نتایج جستجو برای: gauss lobatto nodes
تعداد نتایج: 141634 فیلتر نتایج به سال:
This paper reports a new spectral collocation algorithm for solving time-space fractional partial differential equations with subdiffusion and superdiffusion. In this scheme we employ the shifted Legendre Gauss-Lobatto collocation scheme and the shifted Chebyshev Gauss-Radau collocation approximations for spatial and temporal discretizations, respectively. We focus on implementing the new algor...
This paper describes a simple but effective technique for reducing dispersion errors in finite element solutions of timeharmonic wave propagation problems. The method involves a simple shift of the integration points to locations away from conventional Gauss or Gauss–Lobatto integration points. For bilinear rectangular elements, such a shift results in fourth-order accuracy with respect to disp...
In this paper, we examine the influence of numerical integration on finite element methods using quadrilateral or hexahedral meshes in the time domain. We pay special attention to the use of Gauss-Lobatto points to perform mass lumping for any element order. We provide some theoretical results through several error estimates that are completed by various numerical experiments. c © ??? John Wile...
We introduce a new and efficient Chebyshev-Legendre Galerkin method for elliptic problems. The new method is based on a Legendre-Galerkin formulation, but only the Chebyshev-Gauss-Lobatto points are used in the computation. Hence, it enjoys advantages of both the LegendreGalerkin and Chebyshev-Galerkin methods.
In this paper, we discuss the numerical solution of space fractional diffusion equations. The method of solution is based on using Chebyshev polynomials and finite difference with Gauss-Lobatto points. The validity and reliability of this scheme is tested by its application in various space fractional diffusion equations. The obtained results reveal that the proposed method is more accurate and...
Abstract. We consider a general class of systems of overdetermined differential-algebraic equations (ODAEs). We are particularly interested in extending the application of the symplectic Gauss methods to Hamiltonian and Lagrangian systems with holonomic constraints. For the numerical approximation to the solution to these ODAEs, we present specialized partitioned additive Runge– Kutta (SPARK) m...
In this article, it is shown that under certain conditions, the spectral difference (SD) method is independent of the position of the solution points. This greatly simplifies the design of such schemes, and it also offers the possibility of a significant increase in the efficiency of the method. Furthermore, an accuracy and stability study, based on wave propagation analysis, is presented for s...
This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System’s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transfor...
Abstract: In this paper, we studied the numerical solution of a time-fractional Korteweg–de Vries (KdV) equation with new generalized fractional derivative proposed recently. The fractional derivative employed in this paper was defined in Caputo sense and contained a scale function and a weight function. A finite difference/collocation scheme based on Jacobi–Gauss–Lobatto (JGL) nodes was applie...
This paper is concerned with superconvergence properties of the direct discontinuous Galerkin (DDG) method for one-dimensional linear convection-diffusion equations. We prove, under some suitable choice of numerical fluxes and initial discretization, a 2k-th and (k + 2) -th order superconvergence rate of the DDG approximation at nodes and Lobatto points, respectively, and a (k + 1) -th order of...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید