نتایج جستجو برای: geodesics
تعداد نتایج: 3598 فیلتر نتایج به سال:
We characterize the geometry of the Hamiltonian dynamics with a conformal metric. After investigating the Eisenhart metric, we study the corresponding conformal metric and obtain the geometric structure of the classical Hamiltonian dynamics. Furthermore, the equations for the conformal geodesics, for the Jacobi field along the geodesics, and the equations for a certain flow constrained in a fam...
This article is concerned with geodesics in spaces of Hermitian metrics of positive curvature on an ample line bundle L → X over a Kähler manifold. Stimulated by a recent article of Phong-Sturm [PS], we study the convergence as N → ∞ of geodesics on the finite dimensional symmetric spaces HN of Bergman metrics of ‘height N ’ to Monge-Ampére geodesics on the full infinite dimensional symmetric s...
In pseudo-Riemannian geometry the spaces of space-like and timelike geodesics on a pseudo-Riemannian manifold have natural symplectic structures (just like in the Riemannian case), while the space of light-like geodesics has a natural contact structure. Furthermore, the space of all geodesics has a structure of a Jacobi manifold. We describe the geometry of these structures and their generaliza...
We investigate the set of tangent vectors at a Weierstrass point tangent to complete simple geodesics, which we think of as an innnitesimal version of the Birman Series set, showing that they are a Cantor set of Haus-dorr dimension 1. The gaps in the Cantor set are classiied in terms of the topological behavior of those geodesics tangent to the vector bounding them and deduce 3 new identities f...
In pseudo-Riemannian geometry the spaces of space-like and timelike geodesics on a pseudo-Riemannian manifold have natural symplectic structures (just like in the Riemannian case), while the space of light-like geodesics has a natural contact structure. Furthermore, the space of all geodesics has a structure of a Jacobi manifold. We describe the geometry of these structures and their generaliza...
As the name suggests, Curve Shortening is a gradientflow for the length functional on the space of immersed curves in the surfaceM. One can therefore try to use Curve Shortening to prove existence of geodesics by variational methods. In my talk at S’Agarro I observed that geodesics always are curves without self-tangencies, and recalled that the space of such curves has many different connected...
The geometry of five-dimensional Kerr black holes is discussed based on geodesics and Weyl curvatures. Kerr-Star space, Star-Kerr space and Kruskal space are naturally introduced by using special null geodesics. We show that the geodesics of AdS Kerr black hole are integrable, which generalizes the result of Frolov and Stojkovic. We also show that five-dimensional AdS Kerr black holes are isosp...
We give a Lorentzian metric on the null congruence associated with a timelike conformal vector field. A Liouville type theorem is proved and a boundedness for the volume of the null congruence, analogous to a well-known Berger-Green theorem in the Riemannian case, will be derived by studying conjugate points along null geodesics. As a consequence, several classification results on certain compa...
This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which all...
We prove that for every Q-homological Finsler 3-sphere (M,F ) with a bumpy and irreversible metric F , either there exist two non-hyperbolic prime closed geodesics, or there exist at least three prime closed geodesics.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید