نتایج جستجو برای: hermitian generalized hamiltonian matrix
تعداد نتایج: 552048 فیلتر نتایج به سال:
In this paper, we apply the generalized Hermitian and skew-Hermitian splitting (GHSS) iterative method to the problem of image restoration. We use a new splitting of the Hermitian part of the coefficient matrix of the problem. Moreover, we introduce a restricted version of the GHSS (RGHSS) iterative method together with its convergence properties. The optimal parameter, which minimizes the spec...
By using the complex representation of quaternion matrices, the Moore–Penrose generalized inverse and the Kronecker product of matrices, the expressions of the least squares η-Hermitian solution with the least norm and the expressions of the least squares η-anti-Hermitian solution with the least norm are derived for the matrix equation AXB+CXD = E over quaternions.
The Euclidean action with acceleration has been analyzed in Ref. 1, and referred to henceforth as Paper I, for its Hamiltonian and path integral. In this paper, the state space of the Hamiltonian is analyzed for the case when it is pseudo-Hermitian (equivalent to a Hermitian Hamiltonian), as well as the case when it is inequivalent. The propagator is computed using both creation and destruction...
Examples are given of non-Hermitian Hamiltonian operators which have a real spectrum. Some of the investigated operators are expressed in terms of the generators of the Weil-Heisenberg algebra. It is argued that the existence of an involutive operator Ĵ which renders the Hamiltonian Ĵ-Hermitian leads to the unambiguous definition of an associated positive definite norm allowing for the standard...
I extend the formulation of pseudo-Hermitian quantum mechanics to η(+)-pseudo-Hermitian Hamiltonian operators H with an unbounded metric operator η(+). In particular, I give the details of the construction of the physical Hilbert space, observables and equivalent Hermitian Hamiltonian for the case that H has a real and discrete spectrum and its eigenvectors belong to the domain of η(+) and cons...
Abstract: The block-tridiagonal matrix structure is a common feature in Hamiltonians of models of transport. By allowing for a complex Bloch parameter in the boundary conditions, the Hamiltonian matrix and its transfer matrix are related by a spectral duality. As a consequence, I derive the distribution of the exponents of the transfer matrix in terms of the spectral density of the non-Hermitia...
We give a necessary and sufficient condition for the reality of the spectrum of a non-Hermitian Hamiltonian admitting a complete set of biorthonormal eigenvectors. Recently, we have explored in [1] the basic mathematical structure underlying the spectral properties of PT -symmetric Hamiltonians [2]. In particular, we have shown that these properties are associated with a class of more general (...
We in this paper demonstrate that the $PT$-symmetric non-Hermitian Hamiltonian for a periodically driven system can be generated from kernel by generalized gauge transformation. The is Hermitian and static, while time-dependent transformation operator has to $PT$ symmetric non-unitary general. Biorthogonal sets of eigenstates appear necessarily as consequence Hamiltonian. obtain analytically wa...
Eigenvalue problems arise in many application areas ranging from computational fluid dynamics to information retrieval. In these fields we are often interested in only a few eigenvalues and corresponding eigenvectors of a sparse matrix. In this paper, we comment on the modifications of the eigenvalue problem that can simplify the computation of those eigenpairs. These transformations allow us t...
A classical result of Schur and Horn [Sc, Ho] states that the set of diagonal elements of all n x n Hermitian matrices with fixed eigenvalues is a convex set in IRn. Kostant [Kt] has generalized this result to the case of any semisimple Lie group. This is often referred to as the linear convexity theorem of Kostant: picking up the diagonal of a Hermitian matrix is a linear operation. This resul...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید