نتایج جستجو برای: high level feature
تعداد نتایج: 3009011 فیلتر نتایج به سال:
In this paper we promote the idea of using pixel-based models not only for low level vision, but also to extract high level symbolic representations. We use a deep architecture which has the distinctive property of relying on computational units that incorporate classic computer vision invariances and, especially, the scale invariance. The learning algorithm that is proposed, which is based on ...
Visual action recognition is an important problem in computer vision. In this paper, we propose a new method to probabilistically model and recognize actions of articulated objects, such as hand or body gestures, in image sequences. Our method consists of three levels of representation. At the low level, we first extract a feature vector invariant to scale and in-plane rotation by using the Fou...
This paper discusses our expert system called Integrated System for Facial Expression Recognition (ISFER), which performs recognition and emotional classification of human facial expression from a still full-face image. The system consists of two major parts. The first one is the ISFER Workbench, which forms a framework for hybrid facial feature detection. Multiple feature detection techniques ...
A hierarchical framework to perform automatic categorization and reorientation of consumer images based on their content is presented. Sometimes the consumer rotates the camera while taking the photographs but the user has to later correct the orientation manually. The present system works in such cases; it first categorizes consumer images in a rotation invariant fashion and then detects their...
Several methods have recently been proposed to analyze speech and automatically infer the personality of the speaker. These methods often rely on prosodic and other hand crafted speech processing features extracted with off-the-shelf toolboxes. To achieve high accuracy, numerous features are typically extracted using complex and highly parameterized algorithms. In this paper, a new method based...
In this paper, we described the video high-level feature extraction systems developed at France Telecom Orange Labs (Beijing). In our systems, four categories of lowlevel visual features, namely color, edge, texture and SIFT local descriptors, were extracted. Two approaches to fusing the representative capabilities of these visual features were investigated for different runs. Under the setting...
The libxtract library consists of a collection of over forty functions that can be used for the extraction of low level audio features. In this paper I will describe the development and usage of the library as well as the rationale for its design. Its use in the composition and performance of music involving live electronics also will be discussed. A number of use case scenarios will be present...
In this study we present our system for INTERSPEECH 2014 Computational Paralinguistics Challenge (ComParE 2014), Physical Load Sub-challenge (PLS). Our contribution is twofold. First, we propose using Low Level Descriptor (LLD) information as hints, so as to partition the feature space into meaningful subsets called views. We also show the virtue of commonly employed feature projections, such a...
In the high-level operations of computer vision it is taken for granted that image features have been reliably detected. This paper addresses the problem of feature extraction by scale-space methods. This paper is based on two key ideas: to investigate the stochastic properties of scale-space representations and to investigate the interplay between discrete and continuous images. These investig...
Classification on high-dimensional data with thousands to tens of thousands of dimensions is a challenging task due to the high dimensionality and the quality of the feature set. The problem can be addressed by using feature selection to choose only informative features or feature construction to create new high-level features. Genetic programming (GP) using a tree-based representation can be u...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید